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Abstract

The Air Force Institute of Technology has been involved in developing Kalman
filter based trackers of ballistic missiles for 15 years. The goal of this thesis is to
develop a Multiple Model Adaptive Estimator (MMAE) that tracks the missile plume
(using a forward looking infrared sensor) and the missile hardbody center-of-mass
(additionally using low energy laser returns) for the purr:se of directing a high power
laser to incapacitate the missile.

The missile plume "pogos” about an offset equilibrium point (relative to the
hardbody center-of-mass) with an amplitude and frequency of osciliation that are not
precisely known a priori. The MMAE algorithm estimates these parameters to
improve performance in fracking the hardbody 'center-of-mass.

To accomplish this MMAE structure, single Kalman filters were developed
and tested at the different parameter values. A Kalman filter residual analysis was
used on these working single filters to define the MMAL structure that provxded the
most effective adaptation ar«d most accurate target trackmg

A three-filter MMARE structure gave the lowest hardbody center-of-mass
tracki.., errors. The two-dimensional parameter space, pogo amplitude and
frequency, was successfully partitioned according to the frequency of oscillation,
7 When the plume pogo amplitude is large, the MMAE structure substantially reduces
- the tracking errors of the hardbody center-of-mass, compared to a tracker withput

adaptive pogo estimation.




Enhanced Tracking of Airborne Targets
Using Forward Looking Infrared
and Laser Return Measurements

I, Introduction

The United States of America has been under direct threat from nuclear tipped
Intercontinental Ballistic Missiles (ICBM's) for over thirty years. This threat, even
with the breakup of the Soviet Union, is alive and well, as is seen by the several
countries around the world that have acquired or are actively engaged in acquiring
this offensive nuclear capability. A defensive weapon that could be used to combat
an ICBM in its boost phase of flight is a High Energy Laser (HEL). This high
powered weapon has the unique ability to concentrate energy onto a small area of the
target to render the guidance system of the vehicle useless or to destroy the target
vehicle completely. A key to this HEL defensive weapon is the accuracy that needs
to be attained, as there is a finite amount of time that the laser beam must be
focused onto the target vehicle to accomplish the task.

This HEL is part of a system of components that includes a Forward Looking
Infrared (FLIR) sensor, a Low Energy Laser (LEL), cad a pointing/tracking guidance

computer program. The FLIR sensor will provide position update information to the
computer program, The LEL is used to pinpoint the missile hardbody. The returns




from this LEL device are used as inputs to the tracking algorithm along with the
FLIR measurements for further updates to the computer program. The

pointing/tracking computer program is the heart of this research.

This program will utilize the specific Kalman filter work that has been
progressing for over thirty years in the area of prediction and filtering. A Kalman
filter (KF) is used to estimate various conditions about a target vehicle. These
conditions are summarized in terms of a "state vector," a collection of variables that
describe certain dynamic characteristics of that vehicle. This vector (%) is estimated
at verious times throughout this digital simulation. The most important times are
at the instant just prior to a sampled-data measurement update from the FLIR
sensor and the instant just after this update has occurred. The KF estimates the
state vector, &, at time ¢,;* from the updates provided by the FLIR and LEL sensors.
This KF algorithm then uses an internal mathematical dynamics model made up of
a collection of differential equations to make the best possible prediction of £ at ¢,,, |
one sample period later [1].

The scenario that is simulated for this research is to have an ICBM being
tracked in its boost phase of flight from a very large distance. The FLIR Line Of
Sight (LOS) vector is pointing at the target vehicle with optics common to the FLIR,
the LEL, and the HEL. This system must accurately track the target vehicle despite
the variables that are introduced by nature (atmospheric jitter), vehicle dynamics
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(physical laws of motion), bending/vibration of the optical platform, and the vehicle
plume (plume pogo effect). Radiation from the target plume is projected onto the two-
dimensional FLIR image plane with the position and velocity of the centroid of this
plume estimated by the KF'. The LEL is then swept along the filter-predicted velocity
vector to identify the center of mass of the missile hardbody. This scenario is shown

pictorially in Figure 1.1.
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PFigure 1.1 Missile Tracking Scenario




The physical anomalies of atmospheric jitter and plume pogo effect must be
taken into account for accurate tracking. Atmospheric jitter is the distortion of light
as it traverses the atmosphere. Light arrives at the FLIR plane in waves with a
phase that is independent of the previous light wave. Distorted phase fronts of
emanated waves result in translational shifts on the FLIR image plane, called jitter.
An example of the problems caused by this phenomenon would be to try to aim a
pistol at a far-off target that is sitting on-a hot, black surface (a target on a road).
The target would be enveloped in a "shimmer" of Light. It would be very difficult to
focus on that target because of this atmospheric jitter effect. Furthermore, whatever
platform the optics is mounted upon will have an associated bending/vibration mode
that is activated whenever the platform is slewed for tracking purposes. Finally, the
plume pogo effect is a characteristic of a rocket plume such that the plume oscillates
about an equilibrium point relative to the missile hardbody as the rocket travels
through the air. This pogo effect has an associated frequency and amplitude of

~ oscillation, neither of which are known perfectly ¢ priori.

These physical anomalies are represented in the Kalman filter mathematical
model as either "states" or "parameters." The differences between states and
parameters is that parameters vary more slowly than states and therefore do not
have to be represented in the model as full dynamic states. The addition of a state
adds a higher dimension and the associated mathematical complications to the model.
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Compensating for parameter variation will be accomplished in a different manner.

In this research, the amplitude and frequency of oscillation of the plume pogo
effect are to be represented as parameters, while the pogo offset position and velocity,
atmospheric jitter and the bending/vibration uncertainties will be full-blown states.
There will be several KF's that will be used simultaneously, each prodﬁcing an output
state estimate. Each of these KF's will be programmed with a different value for the
plume pogo effect parameters of amplitude and frequency of oscillation. If the real
world missile happens to be traveling along with the particular value of frequency
and amplitude as is programmed into KF #3, then KF #3 will produce the best state
estimate. The output of the bank of these KF's will be blended in a Bayesian fashion

“that will take into account the outputs of all of the KF's no matter how bad each of
the particular filters is performing, weighing them according to how good their

assumed parameter value seems to be.

Besides producing an output state estimate, each of the filters produces a
“residual;” the difference between the incoming measurements and that filter's best
estimate of the incoming measurements. This residual quantity is a good measure
6f how close that particular KF is to the actual real world. The residual will be veed
. to calculate the probability weighting factor that will be multiplied with the state
- estimate of that particular filter to come up with that particular filter's contribution
bo the state estimate output for the entire computer algorithm. This computer
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algorithm scheme is called a "Multiple Model Adaptive Estimator” (MMAE) and is

further described in Section 1.2.

1.1 BACKGROUND

The Phillips Laboratory (formerly the Air Force Weapons Laboratory), at
Kirtland Air Force Base, New Mexico, has sponsored research for 15 years at the Air
Force Institute of Technology (AFIT) in the use of directed energy weapons to render
certain airborne targets (ICBM's) useless. The research started when AFIT
demonstrated the ability of a Kalmen Filter (KF') based algorithm to outperform the
standard correlation tracker that the Air Force Weapons Laboratory had been using.

Central to the AFIT tracking scheme is the two-dimensional FLIR sensor. The
FLIR is a 300-by-600 picture element (pixel) array of individual radiation collecting
surfaces. Each pixel, 16 microradians per two-dimensional side, passively collects
radiation from the plume and the laser returns from the LEL. Within the entire 300-
by-600 pixel FLIR image plane is an 8-by-8 tracking window. This smaller winddw
provides a position update of the plume centroid.

The block diagram that is being implemented is shown in Figure 1.2. This
- algorithm has been used for 6 Masters theses in a row starting with Rizzo (34]. The
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FLIR output is provided to the KF/Correlation Tracker algorithm. This algorithm
compares the current FLIR data frame to an online-constructed template of the
target/plume intensity pattern. The correlator then deterniines the optimal offssts
in two dimensions that yield maximum correlation with the data generated by the.
template, These offsets are pseudo-measurements for the Linear KI" which estimates
the position and velocity of the plume centroid and performs a propagation cycle to
form the best estimate of the states and measurements at the next sample period.




The FLIR is also updated to have the FLIR Line-Of-Sight (LOS) vector point at the

best estimate of the target vehicle location at the time of the next sample period.

1.2 SUMMARY OF PREVIOUS RESEARCH

Sixteen theses and a number of other documents report the ongoing
developments of the ballistic missile tracking problem. Each thesis contains a
synopsis of previous work. This section provides a general overview of the previous

ballistic missile tracker research completed at AFIT.

Research in this area was initiated by Mercier [26] in 1978, who compared
Extended Kalman Filter (EKF) performance to that of the AFWL correlaiion tracker
under identical conditions. An eight-state truth model was developed for simulation
purposes, consisting of two target position states and six atmospheric jitter states.
The position states defined the target location in each of two FLIR plane coordinate
directions (azimuth and elevation), by accurately portraying target trajectories in
three-dimensional space and projecting onto the FLIR plane. These two position
 variables, generated by trajectory generation “external” to the truth model's state
eﬁuations, were treated as states simply for convenience in simulation, as for ease of
gonerating ervors fbr plots. The atmospheric jitter was modeled by a third order
shaping filter driven by white noise for each FLIR plane axis, as provided by The
Analytic Sciences Corporation (TASC) [16]; three states defined the atmospheric
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distortion in each of the two FLIR plane coordinate directions. The Kalman Filter
dynamics model consisted of four states: two states representing target position, and
two representing the atmospheric jitter (based on reduced order models, versus the
six states of the truth model). In both the truth model and filter dynamics model, the
target position states and atmospheric jitter states were defined in each of the two
FLIR plane coordinate directions. In the filter, the target position and jitter states
were each modeled as a first-order, zero-mean, Gauss-Markov process. The FLIR
provided sampled data measurements to the filter at a 30 Hertz (Hz) rate. The FLIR
measurement noises corrupting «ach pixel output due to background clutter effects
and internal FLIR noises were modeled in the filter as both temporally and spatially
uncorrelated. The target was considered as a point source of light (i.e. a long-range
target) having benign dynamics. The corresponding Airy disc on the FLIR image
plane was modeled as a bivariate Gaussian distribution with circular equal intensity
contours. The conventional correlation tracker and the extended Kalman Filter were
corapared across three different signal-to-noise ratios (SNR), using a ten-run Monte
Carlo analysis to obtain the tracke: error statistics. The results of the comparison
(means and standard deviations of tracking error) are shown in Table 1.1 for a
Gaussian intensity function dispersion, o, equal to one pixel. (For a Gaussian
intensity function dispersion equal to one pixel, most of the useful information is

contained in an area of about five pixels square).




Correlation Tracker irxtended Kalman Filter
Signal-to
. . -
Noise Ratio Mean Error lo Mean Error lo
20 7.0 8.0 0.0 0.2 ‘

Table 1.1 KF and Correlation Tracker Statistics Comparison

While the correlation tracker showed dramatic performance degradation as the
SNR was decreased, the Kalman filter showed only a minor change in its performance
at the lowest SNR tested. The extended Kalman filter was shown to be superior to
the correlation tracker by an order of mwagnitude in the root mean square (rms)
tracking error, provided the mecdels icorporated into the filter were a valid depiction
of the tracking scenario. This success motivated a follow-on thesis to improve filter
modeling and thereby to enhance the psrformance.

The research accomplished by Harnly and Jensen [8,20] investigated modeling
improvements in the filler and tested more dynamic target simulations, A
comparison was made between a new six-state filter and a new eight-state filter. The
six-state filter dynamics target model included the four previous states as well as two
target velocity states in the FLIR plane coordinates (azimuth and elevation); the
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dynamics mode! of the eight-state filter included two acceleration states in the FLIR
coordinates as well. The acceleratior: was modeled as Browniar: motion (BM) (a = w,
where w is a zero-mean white Gaussian noise). ‘The filter was also designed to
perform residual monitoring, which allowed the filter to react adaptively, and
maintain track, by quickly increasing the values in the filter-coraputed staté
covariance matrix P, which in turn increased the filter gain K, when a target
maneuver was detected. A recommendation was also made to examine increasing the
Field-Of-View (FOV) during target jinking maneuvers to avoid losing lock. The
constant-intensity contours of the target were modeled as elliptical patterns as
opposed to the earlier circular equal-intensity contours in order to simulate closer
range targets, such as air-to-air missiles. The major axis of the target FLIR image
was aligned with the estimated velocity vector. A number of different target
trajectories were tested against the six-state and eight-state filters, and while the six-
state filter performed well during moderate jinking maneuvers, the eight-state filter
performed substantially better while tracking high-g target maneuvers.

Other approaches to modeling the dynamics of the target in the filter were
considered by Flynn [6). He compared a Brownian motion (BM) acceleration target
dynamics model [8] and a constant turn-rate (CTR) dynamics model. ‘The CTR mwodel
| portrayed the target behavior by modeling the acceleration as that associated with
CTR dynamics. Concatenating such constant turn-rate segmants together provides
an accurate portrayal of manned target evasive maneuver trajectories. Additionally,
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a Bayesian multiple model adaptive filter (MMAF) was developed using the BM
acceleration dynamics model. A MMAF (Figure 1.3) consists of a bank of K
independent Kalmen filters, each of which is tuned to a specified target dynamics
characteristic or parameter (&, 8,, ... a; in Figure 1.3). The time histories of the
residuals (r(t) fork =1 ,2_,...,K. in Figure 1.8) of these K Kalman filters are processed
to compute the conditional probabilities (p(t} in Figure 1.3) that each discrete
parameter value is "correct.” The residuails ¢f the Kalman filter, based upon the

"correct” model, are expected to be consisienily smaller (relative to the filter's

o] Fl0basad X,() *@
ona, T '

fy (ti) p‘(t.)
r* - a
. m;g;w A ~Q® B ——»
r,t) Xull)
! - e)
. _
Z)
o * » 0
. .
&) | S
g e -".",:“ IR A sz)
F‘:: Tt (tl} I‘ ﬂm,‘s}*::; ] 4 -
K mxzd“?;%}ml : LAY
[ R R

RSP Jr e e

Figure 1.3 Multiple Model Adaptive Filter
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internally computed recidual rms values) than the residuals of the other mismatched
filters (i.e. based upon "incorrect” models) [6]. If that is true, then the MMAF
algorithm apprepriately weights that particular Kalman filter more heavily than the
other Kalman filters. These values are used as weighing coefficients to produce a
probability-weighted average of the elemental filter outputs [6]. Therefore, the state
estimate (x,,,{t) in Figure 1.3) is actually the probabilistically weighted average of
the state estimates generated by each of the K separate Kalman filters (%,(t) in
Figure 1.3), In this research K was 3 and testing of the three filter models was
conducted for three diffevent flight trajectories which included 2-g, 10-g, and 20-g
pull-up maneuvers. Unfortunately, the residuals of the 3 Kalman filters did not
differ from each other enough to perform the weighing function properly, and the
MMAF did not track well. The BM and CTR filters both performed equally well at
2-g¢'s. The CTR filter was found to be substantially better than the BM filter for 10-g

and :?.{l#g pall-up maneuvers.

‘The research to that point had assumed that the filter had a priori knowledge
of the target shape and intensily profile, and that is was a singleﬂhot«spot target.
Singletery {37]) improved the realisas in the target model by developing a moael in the
FLIR p! ne which included multiple h&. spots. However, he returned to the case of
very benign targets, -as treated by Mercier. The filter did not assume a priori
knowledge of the targot size, ghape, or number or location of hot spots. A new data
processing scheme {Figure 1.4) was developed which included the use of the Fast
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Figure 1.4 Data Processing Scheme Using FF'T and IFFT

Fourier Transform (FFT) and the Inverse Fast Fourier Transforma (IFFT), each of
which can be produced with a lens if optical processing is used. The plan included
~ two data paths for processing the intensity measurements z(t). On the first path (the
lower path in Figure 1.4), the u x 8 array of intensity measurements from the FLIR
is arranged into a 64-dimensional measurement vector. This measurement vector is
applied to theﬁ extended Kaiman filter (as in prior work). The purpose of the second
~ path is to provide an estimate of the target's intensity shape function. Centered

i'hrget shape functions are time-averaged with previous centered shape functions in
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order to .gencrate the estimated target template (h in Figure 1.4) and partial
derivatives of it with respect to the states (H in Figure 1.4), as needed by the
extended Kalman filter. The first block in that path of Figure 1.4 has the 8 x 8 FLIR
data padded with rows and columns of zeros to make up a 24 x 24 pixel array. The
purpose of this padding is to ensure that the periodicity of the Discrete Feurier
Transform will not degrade effects within the original data array [23]. This 24 x 24
. pixel image is then centered using the shifting theorem of Fourier {ransforms. The
shift theorem states that a translation of an image in the spatial domain results in
a linear phase shift in the spatial frequency domain. To negate the translational
effects of an uncentered target image in the spatial domain, the Fourier transform
of the translated image is multiplied by the complex conjugate of the desired linear
phase shift [37]. The extended Kalman filler model, in path one, which was
developed by Mercier [26], was used to provide the optimal estimate of the required
linear tran_slation. The filter state estimates are used to develop the complex
conjugate of the linear phase shift and provide the centered measurement functions.
Before the IFFT is taken, the resulting pattern is exponentially smoothed to yield an
-V approximation to averaging the result with N previously centered frames of dats, to
accentuate the actual target intensity image function and to attenuate the effect of
measurement noise, The result is a centered pattern with noise effects substantially
reduced. Foliowing the application of the IFFT to form the nonlinear function of

intensity measurements (h of Figure 1.4), the spatial derivative (approximated by a |
differencing operation) is used to determine the linearized function of intensity
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measurement:s (H of Figure 1.4). These are both used by the Kalman filter in
processing the next sampled measurement [37]. Two sets of position estimates are
provided by the KF block; first, the platform controller is furnished the propagated
dynamics position estimate, &,(¢;,,) and §,(¢,,), as this is the best estimate of the
plume intensity centroid at the time of the next measurement. Note that this
estimate only has dynamics information concerning the plume centroid, no
atmospheric jitter information is included, since it is desired to point at the true
location of the target, not the jittered version of it. The other position estimate, £,(t,")
+Z,(t;") and §,(¢.") + 9,(¢;"), is used for centering the target image in the incoming raw
FLIR data. Note that this estimate does include dynamics arnd atmospheric position
information since the real world target image is translated by atmospheric jitter
along with real world physical dynamics. The results of this data processing scheme
were incenclugive due to filter divergence problems. Despite the problems
encountered with the filter, the concept was considered to have performance
potential.

Rogers [36] continued the work of developing a Kalman filter tracker which
could handle multiple hotspote with no a priori information as to the size, shape,
intensity, or location of the target hot spots. Moreever, he continued the application
to benign target motion, as Singletery [37) had done before, in order to concentrate

-on the feasibility of adaptively identifying the target shape. Using digital signal
processing on the FLIR data (as described above) to identify the target shape, the
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filter uses the information to estimate target offset from the center of the FOV, which
in turn drives a controller to center the image in the FLIR plane. Algorithm
improvements included replacing the Forward-Backward Difference block of Figure
1.4 with a partial differentiation opzration accomplished as a simple multiplication
in the Fourier domain before the IFFT block.

Rogers also considered an alternative design that used the target image h as
a template for an enhanced correlator, as was shown in Figure 1.2. The position
offsets produced as outputs from the correlator were then used as "pseuds-
measurement” inputs to a linear Kalman filicr. The enhanced correlation algoriti-m
of Figure 1.2 compares the FLIR image to an estimated template instead of the
previous image, as is done in the standard correlator. This tracking concept is thus
a hybrid of correlation tracking and Kalman filtering [85]. Its perfermance was
compared to the results of earlier extended Kalman filters that used the raw FLIR
data as measurements [8]. The extended Kalman filter performed well without a
priori knowledge of the shape and location of the intensity centroid, the enhanced
correlator used with the linear Kalman filter showed comparable performance with
the extended Kalman filter whila providing redured computational loading.

| Millner (28] and Kozemchak [11] tested an extended Kalman filter and a lineayr
Kalman filter/enhanced corvelation algorithm against close range, highly
maneuverable targets. The linear four-stéte filter used in the previous research was
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replaced by an eight-state filter consist' g of position, velocity, acceleration, and
atmospheric jitter states in each of the two coordinates of the FLIR plane (azimuth
and elevation). Two target dynamics models were also investigated. The target was
first modeled as a first-order Gauss-Markov acceleration process, and secondly with
a constant turn-rate mode. Both filters performed well without @ priori knowledge
of the target size, shape, and hot spot location, using the FF'T data processing method
for identifying the target shape function [35,37]. However, at target maneuvers
approaching 5 g's, the filter performance degraded considerably. It was noted that
the tracking was substantially better when the Kalman filter dynamics model closely

matched the target trajectory, but that a single nonadaptive filter was inadequate.

The Bayesian MMAF technique [6] was reinvestigated by Suizu [40] based on
the recommendations of the previous work. The MMAF (Figure 1.3) consisted of two
clemental Kalman filters, One elemental filter was tuned for benign target
maneuvers and obtained sampled measurement inforration from an 8 x 8 pixel FOV
in the FLIR plane. A second filter was tuned for highly dynamic maneuvers and
obtained sampled measurement information from a 24 x 24 pixel FOV in the FLIR
plane. The technique allowed the MMAF to maintain track on target trajectories up
to 20 g's at a distance of 20 kilometers. The MMAF was configured for both the
linear Kalman filter/enhanced correlation algorithm [36] and the extended Kalman
filter. Both filtering schemes exhibited comparable rms tracking performance results,
with the correlator/linear Kalman filter having smalier -ean errors and larger
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~ standard deviations than the extended Kalman filter, as seen in earlier work of
Rogers [35]. The state rms tracking error was on the order of 0.2 to 0.4 pixels (one

pixel being equivalent to 20 microradians on a side).

The potential of the MMAF technique with the FFT processing method was
continued by Loving [14]. A third filter was added to the bank of filters, tuned for
intermediate target maneuvers and obtaining sampled measurement information
from the 8 x 8 FOV in the FLIR plane. This MMAF showed significant performance
advantages over all the previous filters. Additionally, a Maximum A Posteriori (MAP)
algorithm was developed and compared with the Bayesian MMAF. The MAP
algorithm differs from the Bayesian MMAF of Figure 1.3 in that the MAP algorithm
uses the residuals of the separate filters to select the one filter with the highest
prdbabilistic validity, while the Bayesian MMAF uses a probability-weighted average
of all filters in the bank. The Bayesian and the MAP techniques produced similar
results and both delivered performance that surpassed previous filters.

Netzer [31] expanded the study of the MMAF algorithm, He investigated a
steady-state bias error that was seen when tracking a target exhibiting a high-g
constant-turn-rate maneuver. A major cause of this bias is the MMAF being tuned
to anticipate equivalent accelerations in all FLIR plane directions. This causes
mistuning in the x-direction (azimuth) while maintaining lock on the highly dynamic
y-direction (elevation) transient for a trajectory starting horizontally and then pulling
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up with a high-g maneuver. This motivates the concept of individual x- and y-
channel target-motion models (and tuning parameters) in the elemental filters in the
MMAF, which would allow adaptive filtering for maneuvers in the x- and y-channels
independently [31]. The size of the FOV was also investigated. When a target came
to within five kilometers of the FLIR platform, the 8 x 8 FOV was saturated with the
intensity centroid image, resulting in a loss of track. This analysis motivates a
éhanging FOV to maintain lock for targets and also warrants the possibility of adding
another Kalman filter which is tuned for extremely harsh maneuvers at close ranges.
A study of the aspect ratio (AR) associated with target's intensity centroid was also
accomplished to identify filter tracking characteristics for various target image
functions [31]. This study used "greyscale plots" to support the analysis. A greyscale
plot is a pictorial display of an image in which shading of the image is used to
indicate similar parameters. In this case, the plot indicated regions of varying levels
of the intensity of the filter-reconstructed target image in a 24 x 24 pixel FOV. Four
different AR values of 0.2, 0.5, 5.0, and 10.0 were compared to the nominal AR of 1.
The results showed that tracking was slightly impaired for images with AR as high
as 6. The reduced performance was primarily along the semi-major axis of an
elliptically modeled intensity centroid. Additionally, a target-decoy experiment was
conducted in which a high density decoy was also located in the FOV with the target.
Sinze the decoy was modeled with different dynamics not given to the filter, it was
hoped that the filter would reject the decoy. This was not the case; the filter locked
onto the hotter decoy image. This indicates that the inability of the current filter
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algorithm to reject this type of bright hotspot requires isolating the target image in

a small FOV or some other concept to ensure tracking of the desired target.

The previous research efforts [14,31,40] used Gauss-Markov acceleration
models in the development of the MMAF, Tobin [41] implemented the CTR dynamics
model in another MMaF. His results showed that the Gauss-Markov MMAF
exhibited smaller bias errors while the CTR MMAF gave smaller steady state
standard deviation errors; both filters had comparable rms errors. Motivated by
- earlier research [31], he also developed an 8 x 24 pixel FOV for both the x- and y-
directions of the FLIR image plane to be used with filters designed to anticipate
harsh target accelerations in a specific direction (along which the longer side of the
OV would be oriented). This resulted in five elemental filters: the original three as
in the research by Loving and Netzer, plus the additional two just described. The
results showed that the filter maintained lock on a target during a highly dynamic
maneuver in the y-direction while maintaining substantially better steady state bias
performance in the benign x-direction. However, this preliminary study only tuned
the filters for high acceleration in the horizontal or vertical single directions (as well
as filters in which no specific direction was preferred).

Leeney [12] expanded the previously used Gauss-Markov truth medel by
inca_rporating bencting vibrational states. The elemental filters in the MMAF were
- notmodeled with this information through explicit state variables, but performed well
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up to a 10-g maneuver. A performance investigation was also conducted as to the
effects of increasing the measurement update rate from the previously used 30 Hz to
50 Hz. The sampling rate of 50 Hz showed a minor performance improvement, but
also increased the computafional loading because of the higher rate. A preliminary
study was also done on replacing the 8 x 24 pixel FOV in the x- and y-directions [41]
on the FLIR plane with a single rotatable 8 x 24 pixel FOV, which is also known as
the rotating rectangular-field-of-view (RRFOV). The idea was to align the long side
of the rectangular FOV with an estimate of the acceleration vector. The higher
precision velocity estimate was actually used instead of the noisier acceleration
estimate, and it was assumed that the acceleration direction would be essentially
orthogonal to the current velocity vector direction for aircraft type targets and
maneuvering missiles. Additionally, the five elemental Kalman filters in the MMAF
bank would be reduced to four by using this FOV rotation scheme. The results were

not conclusive, but the insight provided motivation to continue the study.

The RRFOV research was continued by Norton [32). He discovered that the
appropriate choice of the filter dynamics driving noise strength Q dictated the filter's
response to a high-g jinking maneuver, and that the size of the FCV could be reduced
to an 8 x 8 pixel rotating FOV, also known as the rotating square field of view
(RSFOV). His investigation showed that a non-rotating square FOV could provide
good performance, but that the dynamics noise strength Q matrix value must be large
in the elements corresponding to the direction of the acceleration vector. A
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mathematicel matrix transformation was developed which "rotated" the Q matrix to
keep the larger values aligned with the acceleration vector. A study of both the
rotating FOV and rotating the Q matrix provided advantages and disadvantages for
each method. Both methods are affected by the tuning parameters used to represent
the rms level of acceleration of the target. The rotating FOV improves the x-direction
(azimuth) estimation for dominant y-direction (elevation) dynamics compared to
previous MMAF algorithms (on pull-up maneuvers), but does not improve y-direction
estimation for dominant y-direction dynamics. Rotating the Q matrix adaptively
improves estimation of both x- and y-directions and improves the jink maneuver onset
error transients, but is dependent on the orthogonality of the velocity and
acceleration vectors and proper initial tuning parameters. The conclusion was that
both methods employed together provide the ability to adjust filter characteristics to
differentiate between harsh and benign dynamics in any orientation of target
acceleration (rotating Q) while at the same time maintaining appropriate view
resolution in the directions of both benign and harsh dynamics (rotating FOV).
Therefore, the combination allows for tracking highly maneuvering targets without
sacrificing the resolution provided by the smaller RSFOV [32].

The research up to this point was primarily directed towards tracking aircraft
and missiles from a ground-based FLIR plane. Rizzo [34] initiated research on a
space-based platform which could track targets using the same filtering techniques.
- Since the lnear Kalman filter/enhanced correlator algorithm had proven to be
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computationally more efficient than the extended Kalman filter, it was chos’e'i; as the
system filter for study. The plume "pogo” (oscillation) phenomenon of a mmmle in the
boost phase of flight was modeled in the truth model and in one of two filters used
for the analysis. The pogo was modeled as a second-order Gauss-Markov process, and
applied in the direction of the missile velocity vector. The plan was to estimate the
pogo states adaptively using the MMAF algorithm, treating the pogo amplitude and
oscillation frequency as uncertain parameters. Although the elemental filters were
developed, no MMAF performance was accomplished, due to elemental filter

performance difficulties.

Three rotation schemes were also developed and tested. The first scheme,
referred to as the rotating ficld-of-view (RF'OV), involved using the 8 x 8 FOV filter
and aligning a single axis of the FLIR plane with the estimated velocity vector of the
target; therefore one of the coordinate axss of the FOV would stay aligned with the
oscillation of the plume. Note that, for this class of targets, harsh maneuvering
accelerations orthogonal to the velocity vector were not anticipated. The second
scheme, referred to as the diagonal rotating field-of-view (DRFOV), used the 8 x 8
FOV with the diagonal aligned with che oscillation of the plume. The motivation
behind this scheme is that the 8 x 8 FOV, oriented in such a fashion, will be able to
"see” more of the target's intensity irange, thus enabling the sensor to obtain more
measurement information [34). The third tracking scheme wes the rotating
rectangular field-of-view (RRFOV) algorithm developed from previous rese-wch
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{12,41]. The RFOV, DRFOV, and the RRFOV algorithms [31] were tested along with
the non-rotating field-of-view (NRFQV) filter. The NRFOV is the standard tracker -

sed in previous studies [12,31,41]. The DRFOV scheme was shown to be superior
to the other three tested for providing enhanced tracking of a missile hardbody whose

~ plume is undergoing a pogo phenomenon.

The eight-state filier (without pogo states; two target position states, two target
velocity states, two target acceleration states, and two atmospheric jitter states) and
the ten-state filter (with pogo states) revealed a problem that may have gone
unnoticed in previous work. Following tuning of the filters with a ten-state truth
model (2 target dynamics states, 6 atmospheric states, and 2 pogo states; note the
bending/vibration states were removed), it was discovered that the eight-state
(without pogo states) filter outperformed the ten-state (with pogo states) filter. An
investigation into the cause of the irregularity revealed that there was a serious
observability problem in both filters. The affected states were target velocity and
acceleration. A recommendation was made to remove the acceleration states in the
ten-state filter, and to model the velocity states in t.his"new eight-state filter as a

first-order Gauss-Markov process,

Eden [3] resumed the research of the space-based FLIR platform. The scope
of the tracking problem was expanded by requiring the filter to track the hardbody
of the missile rather than just the intensity centroid from the plume on the FLIR.
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Since the FLIR could not supply the needed iniformation about the hardbody location
relative to the image center-of-intensity to the Kalman filter, another measurement
source was developed. Under the advisement of the Phillips Laboratory, the new
measurement source was identified as a low-energy laser. ‘(he laser actively acquires
measuvrement data while the FLIR obtains its measurement information passively.
This scheme calls for a six-state Kalman filter (consisting of two position states, two
velocity states, and two atmospheric jitter states) to provide both a position vector
and a velocity vector estimate of the target plume. The low-energy laser is scanned
along this estimated velocity vector from the target plume imsage intensity center to
intercept the hardbody. The hardbody is modeled as a rectangle with binary
reflectivity. When the low-energy laser (modeled with a beam width of 2.76 meters
at the target) illuminates the hardbody, the reflection is received by a low-energy
laser sensor on the platform. This speckle information is provided to a single-state

Kalman filter which estimates the distance between the center-of-mass of the missile |
hardbody and the center-of-intensity (centroid) of the plume slong the velocity vector
direction. The center-of-mass of the hardbody is defined as the midpeint of the scan o

across the hardbody if the centerline of the laser beam crosses the aft end of the- - N

missile and the top {(nose) of the hardbody, or if the laser beam crosses the aft end
and one of the sides of the hardbody. The results of the laser scan show that the
interception of the laser with the hardbody occurved only 10-20% of the time. This low
ratio of hitting the target was tentatively attributed to the six-state filter being tuned
for estimating only the intensity centroid location on the FLIR plane and not for
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precise velocity estimation. Since the velocity vector must be accurately estimated
for active illumination of the target to be a viable concept, it was recommended that
the filter also be tuned for accurate velocity estimates.

Tracking the center-of-mass of a missile hardbody using FLIR measurements
and low-energy laser illumination was further investigated by Evans [4]. He
surmised that the tracking error could provide more msnght if it were separated into
the x- and y- (azimuth and elevation) components, or into along-track and across-
track (2-d perpendicular axes of the hardbody) components (E:den 3] had only
evaluated the one along-track component). Evans proposed the latter method would
provide better information relative to the principle axes directions of the physical
error phenomenon. An eight-stute filter was dev*eioped by augmenting Eden's six-
state filler [3] with two additional bias states used to estimate the x- and y-
components of offset between the plume centroid and the hardbody center-of-mass [4].
- A comparison between the eight-state filler and Eden's one-state filter used in
: #onjunction with the six-state PLIR filter, resulted in negligible difference in

- performauce. Evans' analyais of the eight-state Siter's error statistics chowed that

* the tracking error is much greater in the along-track divection than in the across:

- track direction, and thus the separate one-state filter and six-state FLIR filter- -

performed as well as the ail-inclusive eight-state ﬁlter :
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Aside from investigating the tracking error statistics, Evans enhanced Eden's
hardbody model, which treated reflectivity as a binary on/off function, with a
hardbody reflectivity model that accounted for the cylindrical nature of a missile and
its typical nonorthogonality to the linz-of-sight, to provide increased realism in the
simulation. Two reflectivity functions, cross-sectional and longitudinal, were defined
base upon empirical data obtained from a radar return off of a 20 x 249 inch cylinder
with hemispherical endcaps, rotated longitudinally in the plane of the radar socurce

[6]. Asshown in Figure 1.5, the cross-secticaal and longitudinal refiectivity functions
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Figure 1.6 Discrete Implementation of Cross-Sectional Reflectivity Function
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were incorporated into Eden's rectangular hardbody model as 29 discrete weighted
line segments along the longitudinal axis of the hardbody.

Evans alse found that the sensitivity level of the lov -energy sensor is a factor
in determining the reflectivity received at the sensor [4]. The sensitivity level
represents a threshold below which the reflected return is indistinguishable from
sensor noise. A sensitivity factor is incorporated in the simulation to define the
appropriate sensitivity level required to detect a hardbody's return as well as

represent the physical limitations of the sensor.

Performance data collection from the eight-state filter and one-state/six-state
filter combination hinged upon the successful illumination of the hardbody by the
low-energy laser. Evans was faced with a low target intercept rate (10%-20%), which
inhibited any useful error analysis of the center-of-mass offset filters. Realizing this,
Evans generated an ad hoc technique of offsetting the low-energy laser scan relative
to the FLIR estimated velocity vector and "sweeping” the scan across the hardbody,
thus providing guaranteed hardbody illumination information. However, the "sweep"
is not an optimal tool and should only be used to test the center-ofanass offeet filters
in the simulation [4], Both the new reflectivity hardbody model and laser sweop were
cmployed to evaluate the performance of the eight-state filter and one-state/six-state
filter corabination center-of-mass estimators,




Herrera [9] continued to investigate the use of laser returns to determine the
offset between the hardbody and the plume intensity centroid. However, he used the
information contained in the Doppler spectra of the returns as opposed to the speckle
reflectance magnitude. Experiments had shown that the laser speckle return of a
selid-propellant rocket motor is of the same magnitude as that of the hardbedy as a
result of the metallic particles present in the propellant [1]. Thus, part of the plume
is misinterpreted as the missile hardbody. The returns from the plume can cause a
non-negligible bias in the intensity centroid to center-of-nmass offset estimate of 25 to
30 meters, up te 90% of the times a laser scan is successful. This tendency was not
incorporated into the simulations completed by Eden #nd Evans [3,4]. Herrera first
showed that, as suspected, a bias existed in the offset estimates usinz the one-
state/six-state filter combination based on plume speckle return measurements

utilized by Eden and Evans.

Herrera proposed that the two types of information in the Doppler frequency
spectra, magnitude of frequency shift and spread of the return spectrum, could be
used to obtain a finer discernment of the plure/hardbody interface. This proposal was
based on the fact that the spectral content of the hardbody and plume returns exhibit
very different Doppler characteristics that should be readily distinguishable. His
approach to using this information was not to simulate the Doppler phenomenon
itself, but to simulate the quality of the returns provided as measurements to a
single-state linear Kalman filter that estimsates the offset between plume intensity
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centroid and missile hardbody center-of-mass. Herrera simulated the quality of the
low energy laser return as a function of laser wavelength and signal-to-noise ratio,
and simulated a specified probability of no Doppler information at a given sample
time due to either the plume and hardbody syectra being indistinguishable or the

lew-power laser beam missing the target body [9].

To prove the utility of using Doppler spectra, Herrera developed a one-state
offset filter based on Doppler measurements to replace the one-state offset estimator
used’ 7 Eden and Evans [3,4]. He maintained the same independent filter structure
as used before, which utilized a six-state filter (four target dynamics and two
atmospheric jitter states) in conjunction with the offset filter. He also developed a
two-elemental-filter Modified MAP MMAF that incorporated both the speckle return
and the Doppler return measurements. Both configurations successfully showed that
the Doppler return information allowed more accurate determination of the
hardbody/plume interface. The one-state filter based only on Doppler measurement
data delivered unbiased estimates of the offset, and in the case of the two-state
adaptive filter based on both Doppler and speckle information, use of Doppler spectra
permitted accurate calculation of the bias in the effset measurement from the speckle

voturn [9].

Ching [1] performed tests to determine the cause of the cbservability problems

in the filter. He accomplished an cbservability Gramian analysis for six different
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filter models, looking at the size of the eigenvalues relative to each other. A
stochastic observability test was performed on a 12-state (6 jitter states and & target
dynamic states; 2 each for position, velocity, and acceleration) and an 8-state (same
target dynamics states with only 2 jitter states) filter model. This was then repeated
without including the acceleration states in either model. The purpose of this part
of Ching's thesis was to investigate whether there was some interaction between the
atmospheric jitter and other states, as well as to evaluate the observability of the
acceleration states. A different 8-state filter (2 position and 2 velocity states, 2
atmospheric jitter states and 2 plume pogo states) was also tested. Results fromn this
part of the research show large variations (orders of magnitude) of the observability
Gramian matrix. Positive and negative eigenvalues were seen. This was due to
either true unobservable states or to a numeric precision problems associated with
nearly unobservable states. The results were not completely conclusive. Several
filter configurations were run for a sensitivity analysis in determining the
estimatability and interaction between the jitter and pogo phenomens. Ching found
that estimation of jitter is important to the accuracy of the filter; pogo estimation is
casier to estimate, but is not as major a factor as jitter in the estimation accuracy.
Several Monte Carlo runs were also accomplished using the AFIT software with the
MMAE elemental filter. He researched one of the elemental linear KF's that will be
used in the MMAE algorithm to provide adaptivity to amplitude and frequency of the
plume pogo phenomenon, assuming particular values for those two parametes,
Software errors introduced problems that directly affected the results from these
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Monte Carlo runs. The single filter that Ching researched forms the basis from
which this thesis is built upen.

1.3 THESIS OBJECTIVES

This thesis is the culmination of over fifteen years of research into the problem
of accurately tracking missiles using & FLIR sensor. The focus of recent theses has
been based on the data algorithm of Figure 1.2. Rizzo used this block diagram,
replacing the KF block with a Multiple Model Adaptive Estimator composed of linear
Kalman filters running in parallel; the intent was to adapt to amplitude and
frequency of the "plume pogo" effect, but difficulties arose because (1) target
acceleration states were included in the missile dynamics model and (2) only FLIR
data was used, with no additional measurement to help distinguish between plume
center-of-intensity location and the hardbody center-of-mass. Eden, Evans, and
Herrera incorpoceted a Low Energy Laser (LEL) measurement uplate to help
estimate the missile hardbody center-of-mass; disregarding “plume pogo." Ching
researched one of the elemental filters that will make up the KF bank in the MMAE
algorithm of this research,

This research uses 8 FORTRAN computer simulation to implement the block
diagram of Figure 1.2, The Kalman filter block will be replaced by an MMAE
incorporating a bank of parallel-running, linear K's that are intended to propagute
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and update the state estimate based on a specific assumed value of pogo amplitude
and frequency. The multiple model adaptation process of the MMAE will estimate
the uncertain pogo parameters of amplitude and frequency of oscillation of the vehicle
plume. Although accuracy of parameter estimation is important and will be fully
investigated, the primary performance criterion of interest is the accuracy with which
the overall tracking algorithm follows the true target center-of-mass. The state
estimate from the KF bank will be a Bayesian mixture of the outputs from each
elemental KF, as shown in Figure 1.3. A certain probability weighting will be
assigned to the output of each particular filter according to how well that filter is
estimating the real world. The individual probabilities multiplied by that particular
filter's state estimate add to form the best available state estimate as a probability-
weighted average. The uncertain parameters of amplitude and frequency of

oscillation will be estimated in a similar manner [17).

The KI5 in the MMAE scheme will be programmed and tuned for a specific
real world condition of the plume pogo amplitude and frequency of oscillation. The
Bayesian blend of these KF's (Figure 1.3) follows the slowly varying parameters of
awmplitude and frequency of oscillation of the plume pogo observed in the real world.
The elemental KI's will be individually tuned to provide optimal performance while
adequately discretizing the parameter epace. The proper discretization of the
parameter space is one of the focuses of this researxch as this is critical in identifying

the pogo parameters,
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1.4 THESIS: OVERVIEW

This chapter has introduced the problem statement and given a historical
perspective on this work with the description of all of the past work in this research
strain. Chapter 2 will describe the basic theory of Kalman filters and the
development of Multiple Model Adaptive Estimation (MMAE) theory. The simulation
wpace for the FLIR and target vehicle and their reference frames will also be
described in this chapter. Chapter 3 details the dynamics and measurement models
from the real world truth model with Chapter 4 explaining the Kalman filter
dynamics and measurement models. Chapter b will discuss the obtained results and
Chapter 6 will contain the conclusions and recommendations for further study.




II. Kalman Filters, MMAE and Simulation Coordinate Frames

2.1 Introduction.

This chapter presents the basics of Kalman Filters (KF's), Multiple Model
Adaptive Estimation (MMAE) theory, and a description of the coordinate frames used
in this simulation. The theoretical basis and derivation of KF's has existed for a long
time and thus will not be rigorously developed. Much of this chapter's material is
taken from the excellent work from previous theses (1,3,4,9,34]. The elementai filters
within the MMAE algorithm are based on the theory presented in the KF section.
The MMAE section will essentially be taken from Herrera [9) and Maybeck, Volume
IT, Section 10-8 [17]; the reader is asked to consult these references for further
clarification of any ideas that are not made completely understandable.

2.2 Kalman Filter Theory

2.2.1 Introduction. The KF is a recursive optimal data processing
algorithm, It is recursive in that the same algorithm is used over and over using the
entive time history of data. This algorithm is optimal if the eystem can be
vepresented by a linear system model driven by white Gaussian noise. The KF
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s,

estimate is constructed from a mathematical model that propagates an estimate over
a measurement sample period. The model is started from some known initial
condition mean value with a known initial covariance. The initial statistics are

represented by the following equations:

E{xt) = 4, @)

E {[x(tp - £llx(tp - .e,,]T} = Py 2.2)
where the notation (*) indicates an estimated value and E{ } is the expectation or
ensemble average of possible outcomes. A variable is displayed in boldface lower case
characters when representing a vector quantity; a matrix is denoted by boldface
capital letters. At each sample time an updats is performed by the filter using the
measurement, the predicted state estimate, and a computed gain. The filter then
propagates this estimate to just prior to the next sample time, when the next update
is performed. Statistics (expected value and noise strength or covariance) of the
driving white Gaussian noise and the measurement noise must also be known e

priori,

The KF receives measurements at a certain sample rate and propagates the
state conditiored upon the measurement time history Z(¢,), which is given as:
where z(¢) is the mesSurement data available at sample time ¢, The conditional

mean and covariance of the state variables are given by:
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" (tl).
2(t,)
Z(t‘) = . (2-3)

| 22,
where z(¢) is the measurement data available at sample time ¢. The conditional

mean and covariance of the state variables are given by:

20 = E{x(t)|20)= 2,} (2.4)

Fe) = E{ @) - 36)1x06) - 26)17126)= 2} (2.6)
where Z, is a realization or observed set of values of the measurement history 2.

An important feature of the KF is that it provides a measure of how well it is
doing the job of estimating the real world. This is through its residual: the ditference
between the actual measurement and the filter's best prediction of that measurement
before it arrives. If this residual value is laxge, the filter is not estimating real world
 conditions very well. This property of the filter is exploited in the MMAE scheme,
as wiil be seen in Section 2.9.

2.2.2 Linear Kalman Filter. The mathemstical model that is used for the
basis of a linear Kalman Filter (Li.i) is of the form:

23




@) = Fixt) + Biut) + GRw(t) (2.6)

where:
) = Homogeneous system state dynamics matrix
at) = State vector
B = Deterministic input matrix
u®) = Deterministic control input vector
Git) = Driving noise inpui matrix
wit) = White Gaussian driving noise vector

The mean and strength of the white Gaussian dynamics driving noise is given by:

E{w() =0 2.7

E { witha(tw)" } = Q(1)o(x) | {2.8)
The linear gystem described by Equations (2.1) - (2.3) is a continuous-time system
that represents the real world, This real world must be described by & discretized
system since the simulation und filter implementsation will Ly done using a digital
computer. This discrete-time system is described by:
(8 ) = e, 0. 0:08) + BLeult) + G (8w (t) 2.9)

where:
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O k) = The system state transition matrix which is defined as an
n-by-n matrix that satisfies the differential equation and

initial condition given by:
dott) = F()d(t,L) (2.10)
dt
W) =1 211)
and:
at) = Discrete-time vector of states of interest
B¢ = Discrete-time control input matrix
ul®) = Discrete-time deterministic control input vector
wit) = Discrete-time independent, white Gaussian noise process,
independent of x(¢,), with mean and covariance statistics
definnd as:
Elwge <0 (2.12)
E{w it i)'} = { 0 bt @19
with:
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Q)= " ¢,y IEOREOGEF Bty dr @2.14)

The KF incorporates measurements from external measuring devices at each

sample time to improve the state estimate. The discrete-tin.e linear measurement

model is of the form:

2(t) = H(t)x(t) +o(t) (2.15)
where:
2t) = m-dimensional measurement vector at sample time ¢,
H(@) = State observation matrix
at) = State vector
W) = White Gaussian measurement noise

The discrete-time white Gaussian measurement noise v is independent of both x(t,)

and w for all times, and has a mean and covariance, B, given by:

Eleit) =0 (2.16)

R 3 =y

E L vitote)" | { S et @17

The KF propagates the state conditional mean and its covariance from the
instant in time immediately following the moest recent measurement update, ¢, to the
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instant in time immediately preceding the next measuremen* update, ¢,,,, by
integration (accomplished numericeally, or analytically by means of state transition

matrices) of the following equations:

#elt) = Foh) (2.18)

B(t/t) = F@)P(s/t) + P )FQ)T + GHQRWGE) (2.19)
where the notation i(¢/t) denctes optimal estimates of x at time ¢, conditioned on

measurements through time ¢,, and with initial conditions:

2(eft) = 2)) (2.20)

P@/t) = P (2.21)
where &(¢;') and P(¢;") are the results of the previous measurement update cycle. At
time £, &, and P, from Equations (2.1) and (2.2) are used to initialize the first

propagation.

That update cycle when a measurement becomes available at time t, is based

on the following equations:




K(t) = P(t)H()THE)PE)HE) + R(¢)T (2.22)
B)) = #1) + Ee@) - Hepa)] (2.23)

PG = Pt) - KG)H )P (2.24)
where i(¢;) and P(t;) are the result of the propagation integration up to time ¢,, K(z,)
is the time-varying Kalmen filter gain matrix that assigns "weights" to the new
information (consisting of the difference between the actual measurement and the
filter's estimate of the measurement, H(¢Ja(¢,), as seen in Equation (2.23)), based on

known measurement noise statistics and filter-computed covariances.

In some instances (as with the case when pogo is included in the elemental
filter), the discrete-time measurement update is a known nonlinear function of the
state vector. In such cases, the following nonlinear extended KF update model is
used in place of Equation (2.15). The measurements are modeled as:

z(ii) = k[x(t,);t,] + ut,) (2-25)

where Alx(¢),¢,] is a known vector of functions of state and time, and v(?,) is the same
discrete-time white Gaussian measurement noise as defined before. When a
nonlinear measurement is available, Equation (2.22) is still used to determine the KF*
gain matrix, but the matrix i is defined by:
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The updated state vector becomes a function of the nonlinear residual, [2(¢,)-hIA(t,),t,]]

and Equation (2.23) is modified to become:

2) = 207) + K@) () - BIEE)) (2.27)

2.3 Multiple Model Adaptive Estimation

The optimality of the state estimator is dependent upon complete knowledge
of the parameters that define the best model for system dynamics, output relations,
and statistical description of uncertainties [17], For Kalman Sflter tracking
applications, maximum performance is achieved when the parameters of the filter
dynamics model match the parameters of the target being tracked. Often, the
parameters are known only with some uncertainty and may exhibit time-varying
characteristics (such asin the case of maneuvering targets with changing acceleration
levels). Thus, there is a need to devise a method that produces optimum state
estimates despite the incomplete @ priori knowledge of parameter values, and
provides the estimates in an adaptive, on-line fashion. The MMAE satisfies these

requirements [17).

To implement the MNIAE algorithm, it becomes necessary to discretize the
parameter space by the judicious choice of discrete values that are representatively
dispersed throughout the continuous range of possible values. For the tracking
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To implement the MMAE algorithm, it becomes necessary to discretize the
parameter space by the judicious choice of discrete values that are representatively
dispersed throughout the continuous range of possible values. ¥.. .he tracking
problem at hand, a target is assumed to be able to display K different discrete sets
of pogo conditions corresponding to cne of X discrete combinations of pogo oscillatien
frequency and amplitude. As previously shown in Figure 1.3, a Kalman filter is then
designed for each choice of parameter value, resulting in a bank of K separate
elemental filters.

Let @ denote the vector of uncertain parameters in a given linear time-
invariant state model for & dynamic system. A system model would be represented
by the following first-order, stochastic differential equation;

3(e) = Fak(®) + Bl@)u(t) + Glaw(®) (2.28)

with noise corrupted, discrete-time measurements given by:

2(t) = H(a)(t) + o) (2.29)
where:
alt) = n-dimensional system state vector
u(®) =  r-dimensional deterministic control vector
w{t) =  s-dimensional white, Gaussian, zero-mean noise vector

process of strength Q(a)

() = m-dimensions] measurement vector
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o) = m-dimensicnal discrete-time white, Gaussian, zero-mean
noise vector process of covariance R(a)
- Fa) = n x n system plant matrix
B(a@) = n x r input distribution matrix
Gle) = n x s noise distribution matrix
Ha) = m x n matrix relating measurement to states

Note that F, B, G, H, @, and R are assumed to be functions (potentially) of the

parameter a, but not of time ¢.

The parameter vector, a, is discretized into a set of K finite vector values, a,,
a,, ... , Gy, and associated with each a, is a different system model of the form given
by Equations (2.28) and (2.29). Each elemental Kalman filter, tuned for a specific a,,
produces a state estimate which is weighed appropriately using the hypothesis
conditional probability p,(t) to produce the state estimate £,,,,.(¢) as a probability

weighted average, as shown in Figure 1.3, where:

Faopazn fE1 100 & )D\E )
K

JZ‘: A h(!,lio.atﬂ)(zi / ajsz(q)P_,(t.’.l)

P (2.30)

. oxnl _ :
Fspaz )21 180243) = (2n)f"§ph,,(:;) 7 (2.31)

where:
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{-}={- %r,(ti)TA,.(ti)'l 7}

with:

A,t) = kthfilter's computed residual covariance

= H,@PE)IHE) + R(t)
ri) = kth filter's residual

= [2(¢) - HEX0))

a, = Parameter value assumed in the kth filter

Pt) = kthfilter's computed state error covariance before incorporating

the measurement at time ¢
2y = Measurement history up to ime &;,

The residual of the Ath elemental Kalman filter, that best matches the current
pogo conditions associated with the parameter value a,, is expected to be smaller
than the residuals of the other mismatched filters, so that the exponential term in
Equation (2.81) is smallest for the kth elemental filter. Therefore, the hypothesis
conditional probability given by Equation (2.30) with index corvesponding to the
“correct" filter will then be largest among the con litional probabilities, thus assigning
the most weight to the "correct’ state estimate. This algorithm performs well if each
cleraental filter is optimally tuned for best performance for a specific pogo condition,
causing its residual to be distinguishable from these of the mismatched filters. It is
also important not to add excessive amounts of pseudonoise to compensate for model
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magnitude, then Equation (2.30) will result in the growth of the p, associated with
the filter with the smallest value of |A,|. The values of |A,| are independent not
only of the residuals, but also of the "correctness” of the K models, and so the result
would be totally erroneous [17]. Therefore, the scalar denominator in the right hand
side of Equation (2.31) might be removed in the final implementation of the
algorithm.,

The output of the MMAE algorithm is the probability-weighted average of the

elemental filters' estimates, given by:

K
umati) = kZp,,(ti)ft(t{) (2.32)
]

The conditional covariance matrix for the MMAE is computed es:

f 4
P )= tEj‘p,‘(t‘)nﬁ'.(ta + B W)™ (2.39)
where:
LD = 36N - 2,089
D) = kth filter's conditional hypothesis probability
P = kth filter's stat» error covaniance matrix after incorporating

the measurement at time 3,
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P(t") =  kthfilter'sstate error covariance matrix after incorporating

the measurement at time ¢,

Since the values of p,(¢)) and £, (") depend upon the discrete measurements taken
through time ¢;, P, (¢;") cannot be precomputed as in the case for the elemental
filters. However, Equation (2.30) need not be computed for the on-line filter
algorithm.

The calculated probabilities of Equation (2.30) should be modified by an
artificial lower bound [12,17,31). This lower bound will prevent a mismatched filter's
hypothesis conditional probability from converging to (essentially) zero. If a filter's
D, should reach zero, it will remain zero for all time, as can be seen from the iterative
nature of Equation (2.30). This effectively removes that filter from the bank and
degrades the responsiveness of the MMAE to future changes of the parameter values.
If some future pogo condition matched the model for which the p, was locked onto
zero, that elemental filter's estimate would not be appropriately weighted and the
MMAE estimate would be in ervor. In previous work, Tobin [41] established a lower
bound of 0.001 for p,(¢,). After the lower bound is imposed, the p,'s are rescaled so

they add to one.




2.4 Simulation Space

Simulation of the tracking scenario, which encompasses the target trajectory,
the FLIR sensor operation, and the low-energy laser illumination of the missile
hardbody and the generation of the speckle return and Doppler measurements, is
performed on a digital computer. A 3-dimensional "simulation space” is generated
wherein a target body and plume are propagated along a realistic trajectory. Several
coordinate frames in the simulation space provide the means of mathematically
projecting the target plume's infrared image and velocity vector onto the two-
dimensional FLIR image plane [6,6,27]). In addition, these frames are utilized to
project a representation of the hardbody center-of-mass, as well as to define the start
and orientation of the low-energy laser scan [1] for generating speckle and Doppler
measurements for the filter algorithm, This chapter describes the different
coordinate frames of the simulation space and covers the process of pointing the FLIR
sensor at the target during tracking. This section is taken largely fom Herrera's
work [9].

2.4.1 Coordinnte Frames. As shown in Figure 2.1, three primary coordinate
frames are defined in the simulation space: a system ineriial reference frame, a
target reference frame, and an a-B-r reference frame. Each of these reference frames
is described in the following paragraphs.
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EFigure 2.1 Three Primary Coordinate Fremes in Simulation Space

2.4.1.1 Inertial Reference Frame. The inertial reference frame is a Nerth-Up-
East (NUE) frame wherein the target flight trajectory ocours.
Origin: location of the FLIR sensor
Axes: €, - due north, tangent to the earth's surface, defines zero
azimuth
¢, - inertial “up"
&, - vector completing right-hand coordinate set, defines 90°

azimuth
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Note: The azimuth angle (o) is messured eastward from e,. The elevation angle (f)

is measured "up" from the horizontal plane defined by e, and e,.

2.4.1.2 Target Plume Reference Frame. This frame is located at the target
plume with one of its unit ventors co-linear with the target's true velocity vector.
0rigin: plume intensity centroid
Axes: e, - along the true velocity vector

e,, - out the right side of the {arget, orthogonal to both e, and the LOS
vector (pv’ means "perpendicular to the velocity vector”; note that e, and
e,, form a plane paraliel to the FLIR image plane, to be discussed in
Section 2.4.1.4)
©,, - vector completing the right-hand coordinate set

24.1.8 o-p-r Reference Frame. The a-f-r veference frame is defined by the
azimuth angle o’ and the elevation angle " measured with respect to the FLIR line-
of-sight (LOS) vector e,. The true azimuth o and the true elevation p are referenced
from the true north and the horizon. This frame is used to project the targets
position and velocity onto the FLIR plane.

Origin: plume intensity centroid

Axes: o, coincident with the true sensor-to-target LOS vector; ¢, and e,

define a plane perpendicular to e, rotated from inertial e, and ¢, by the

azimuth angle () and elevation angle (§)
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There are three specizl coordinate frames associated with the a-g-r reference frame:

the o-p (FLIR) plane, the absolute «-B-r reference frame, and the trans-FLIR plane.

24.14 o-B (FLIR Image) Plane. The FLiR plane is used to obtain the
measurements of the target plume positicn and is the reference frame for the
geometrically derived velocity vector components of the target's intensity centroid.
The FLIR plane is defined by the e, and e, unit vectors, with the LOS vector
(orthogonal to the FLIR plane) representing the pointing orientation of the FLIR
sensor, and the high and low-energy lasers. Note the orientation of the +yg p axis
in Figure 2.1, which allows the LOS vector to be positive towards the target, where
it is considered the third member of a right-handed set of coordinates as defined by

the unit vectors ey, ¢, and e,

Due to the large distance to the target (approximately 2,000 kilometers), small
angle approximations ave invoked, allowing the "pseudo” azimuth and elevation
angles, " and §°, to be linearly proportional to the x and y cartesian coordinates in
the FLIR plane. The x and y coordinates are measured in pixels (a pixel of linear
length corresponds to 16 microradians of arc) and will provide a means of evaluating
the performance of the Kalman filter associated with tracking the intensity centroid
of the target.
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2.4.1.5 Absolute o-B-r Reference Frame. The absolute o-p-r reference frame is
fixed in inertial space at the initial o-B-r coordinates of the target. This coordinate
system defines the initial pointing direction of the FLIR LOS vector e,, and is also
used to define the true and filter-estimated target positions and velocity components

on the FLIR plane.

2.4.1.6 Trens-FLIR Plane. This plane is defined as the result of translating
the center of the FLIR FOV to the true center-of-mass of the missile hardbody. The
frame is used to determine the xpz and yp i coordinate errors of the hardbody

center-of-mass filter's estimates, for performance analysis purposes.

2.4.1.7 ALT/ACT (Along-Track |Across-Track) Plane. This plane, shown in
Figure 2.2, is a rotation of the trans-FLIR plane by the true orientation angle 0,,
formed by the target trgjectory with respect to the FLIR coordinate plane. It is used
to determine the along-track and scross-track components of the tracking exror, i.e.,
the mean and covariance of the hardbody center-of-mnass estimates {4).

2.4.2 FLIR Image Plane. All dynamic events associated with the target plume
intenisity "pattern” or "function,” and with the active illumination of the missile
hardbody in 3-dimensional inertial epace, are projected onto the 2-dimensional FLIR
inaage plane. The measurements generated as a result of IR detection by the FLIR
sen .or are provided to the enhanced correlator algorithm, which produces “pseudo-
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Figure 2.2 FLIR Plane, Trans-FLIR Plane, and ALT-ACT Plane

measurcments” to the PLIR Kalman filter to update its state estimates. For the
missile hardbody, LEL-generated measurements of the offset distance betweon the
hardbody center-of-mass and the plume intensity centroid are geometrically projected
onto the FLIR image plane. Thus, the FLIR image plane is th.e realtn in which the
performance of the MMAE filter is evaluated. Also note that it is a natural plane for
such evaluation of a laser weapon, since pointing angle ervors are critical and range
is not. This section introduces the FLIR Field-of-View (FOV) “tracking window,” and

discusses the construction and projection of the target models.
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2.4.2.1 FLIR Field-of-View. The FLIR FOV, shown in Figure 2.3, consists of
an 8 x 8 pixel sub-array (in the FLIR sensor 300 x 500 pixel array) which provides
sensed information as a function of the varying intensity of the plume IR image and
the background and internal FLIR noise. Based upon this information, the position
estimates from each six-state FLIR Kalman {:}; . within the MMAE algorithm serve
to center the centroid of the plume IR image in the FOV. Since the low-energy laser
is boresighted with the FOV, the FLIR filter position and velocity estimates of the

intensity centroid define the origin and orientation of the laser scan to "paint” the

Target Plume Formed by
Subtracting "Trailing” from
. "Leading” Gaussian
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Figure 2.3 Target Plume Image in 8 x 8 FLIR Field-of-View
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hardbody. The errors of the FLIR filter's estimate of the centroid position and
velocity, and the hardbody center-of-mass filter's estimate of offset, are expressed in
units of "pixels." These errors become meaningful through a pixel proportionality
constant, k,, equal to 156 microradians per pixel [19]. With this constant, 1 pixel

corresponds to approximately 30 meters for a range of 2,000 kilometers.

2.4.2.2 Target Models on the FLIR Plane. The difference of two Gaussian
intensity functions creates a planform that models the hotspot of the plume target on
the FLIR plane [19], as shown in Figure 2.3. The "trailing" function is subtracted
from the "leading" function to construct a suitable approximation of empirically
observed plume intensity profiles. The missile hardbody is not sensed by the FLIR
sensor. However, it is geometrically projected onto the FLIR plar » as a rectangle,
located an offset distance from tae plume centroid along the target's velocity vector.
Since the FLIR sensor can only detect the IR intensity shape function of the plume,
the remainder of this discussion emphasizes the intensity centroid model. More

about the hardbody model will be presented in Chapter III.

2.4.2.8 Target Plume Model on the FLIR Plane. The radiated energy intensity
from each intensity function is represented as a bivariate Gaussian distribution with
elliptical constant intensity contours. Each of the two bivariate Gaussian intensity
functions has its semi-major axis aligned with the target velocity vector as seen in

the FLIR image plane, and is given by [19]:
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where:

%Y

xpeakxy peak

max

T2, %o 8) Y e @] = I, exp[-0.5(AxAy)P *(AxAy)'] (2.34)

i}

(%= %,0,1)c080, + (¥~ ¥, )8in6,, measured along the ALT axis
of Figure 2.2

O ¥peardc080; - (x- %,,,)5in0,, measured along the ACT axis
of Figure 2.2

True target orientation angle between the projection of the
velocity vector and the x-axis in the FLIR plane; see Figure
2.2

Coordinate axes on the a-f plane

Peak intensity coordinates of each single Gaussian
intensity function

Maximum intensity function

2 x 2 target dispersion matrix whose eigenvalues (o,’ and
0,’) define the dispersion of the elliptical constant

intensity contours

Figure 2.4 illustrates the spatial relationship between the two intensity functions

along the target e, axis. The difference between the intensity functions is the

equilibrium displacement if there were no pogo effect; the "pogo” causes vscillations

about this equilibrium point, The displacement values are based on the assumption
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Figure 2.4 Spatial Relationship of Target Plume Gaussian Intensity Functions

that the dispersion of the exhaust plume in the e, direction (normal to both e, and

" the LOS vector) is approximately 20 times the diameter of the missile [19]. With the
dimensions of the hardbody chosen as 40 meters long and 3 meters in diameter, the
centroid of the first intensity function is located 66 meters behind the hardbody
center-of-mass. The placement of the first centroid simulates the composite centroid
of the exhaust plume being close to the missile exhaust nozzle, whereas the position
of the second centroid enables one to simulate different piume shapes. The second,

g" centroid is arbitrarily located 110 meters from the center-of-mass, and the
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defined spatial relationship remains fixed in the target frame during the simulation
(should the difference between the two Gaussian intensity functions become negative,
the simulation clips the difference to zero). Any external forces acting on the missile
other than thrust and gravity are assumed negligible, which thus yields an agsumed
zero sideslip angle as well as zero angle of attack. These assumptions allow the semi-
major axes of the elliptical constant-intensity contours to be aligned with the
projection of the target's velocity vector onto the FLIR image plane, and provides a
simplified simulation geometry while retaining the essential features of the trajectory

simulation.

2.4.2.4 Target Plume Projection onto the FLIR Plane. As the target plume is
propagated through inertial space, the output of the FLIR pixels is simulated by
projecting the two intensity functions onto the FLIR plane. The geometry of the
projection is shown in Figure 2.6. The "reference target image” is oriented on the
FLIR plane to correspond to the largest apparent planform (i.e., with its velocity
vector orthogonal to the LOS vector) atl a given initial reference range, r,. As seen
in Figure 2.6, the target intensity image is defined by the dispersion along the

principle axes of the two Gaussian intensity functions, given by:

oo o
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Figure 2.6 Target Plume Intensity Centroid Projection Geometry

o, = [f-"-][om *+(o,, = G,,Jc08Y)]
r (2.36)

=om,[1 *-M(AR-D}

v

CuiOpoe = Initial dispersions of the target intensity functions along e, and

€,, in the target frame of the reference image
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Figure 2.6 Intensity Centroid Dispersion Axes in FLIR Plane

OpOp = Current dispersions of the target image
r, = Initial sensor-to-target range of the reference image
r = Current sensor-to-target range
v = Initial velocity vector of the target
v o= Magnitude of v
Vios = Projection of v onto the o-f plane (FLIR); i.e., the component of
v perpendicular to the LOS vector
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Vigos = Magnitude of v ;4

viggs = (62 +B2112 | (2.37)
Yy = Target aspect angle between v and the o-p (FLIR) plane
0 = Angle between v,;,; and +xg 5
AR = 0,/0,, aspect ratio of the reference image

Referring back to Figure 2.4, the location of each intemsity function, or
"hotspot,” is initialized as a displacement from the hardbody center-of-mass. The
intensity functions are oriented in the FLIR plane via the true tzrget orientation
angle 0,. The relative positions of the two intensity functions in the FLIR plane vary
in response to the change in target aspect angle y (Iigure 2.5) while the spatial
relationship of the hotspots remains the same in the three-dimensional target frame,
If the plume pogo forcing input is applied, the hotspots do not remain fixed in the
target frame, causing the composite image centroid to oscillate along the velocity
vector and produce additional perturbations to the hotspot image in the FLIR plane
{19}

2.4.2.5 Target Plume Velocity Projection onto the FLIR Plane. The general

discrete-time equation that models the target dynamics is given by:

x(tl'*l) & ‘b(tiolitimti) + Bd(ti)u(t‘) + Gd(ti)u)d(t‘-) (2.38)
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where:
@0t
x(t)
Bt)
u(t)
G4¢)

wy(t)

System state transition matrix

Discrete-time vector of states of interest

Discrete-time control input matrix

Discrete-time deterministic control input vector

Discrete-time driving noise input matrix

Discrete-time, zero-mean, white Gaussian noise process with

independent components and covariance @,

Based on the geometry shown previously in Figure 2.5, the projection of the

target's inertial velocity vector onto the FLIR image plane is the deterministic input

vector given by [6):

where:
u(t)
a’(t)

Be)

—
=

v
—

ult) = [a) B e (2.39)

True target deterministic input vector
Target azimuth rate in the FLIR plane

Target elevation rate in the FLIR plane

As seen in the inertial frame disgrams of Figure 2.7, the azimuth can be defined as:

alt) = arctan .?59,] (2.40)
x(t)
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Figure 2.7 Inertial Velecity FLIR Plane Projection Geometry

Taking the time derivative of Equation (2.40) and noting that the sensor-to-target

range is large so that ¢'(¢)) & a(t)), the azimuth velocity in wae FLIR plane is given by:

) 28, () - 2@ (t) (2.41)
z32) +2%)

a'®) = alt)

wheve:
v, = components of the target's inertial velocity in the e, and e,
directions
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Similarly, the elevation velccity i+ the FLIR plane is given by:

B‘(t) - B ® - r,,(t)v,,(t) - YO, (2.42)
ri)

<
n

Component of the target's inertial velocity in the e, direction

Horizontal projection of the sensor-to-target range, with its time

=
u

derivative as expressed as:

28 (t) + (v ()

(2.43)
r h(t)

P '.(t) =

2.4.3 FLIR Sensor Pointing Coniroller. The filler's propagated estimates of the
intensity centroid's position dictate the necessary change in azimuth and elevation
that the FLIR sensor should undergo ever the next sample period to centor the
hotspot on the FLIR FOV plane at the siext measurement sample time. Ideally, these
positional estimates are fed as commands to a pointing contrelier that physically
impicments the directional changes within one sample period (1/60 second). The
original sunple period used in the recent pazt for the benign trajectory scenarios has
been 1/30 second. The newer sample period matches the current hardware and
software being developed at the Phillips Laboratory [1].
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2.5 Summary

This chapter presented the mathematical models of the linear Kalman filter,
the MMAE algorithms, and a description of the simulation space. The linear Kalman
filter is an optimal estimator and constitutes an elemental filter in the MMAE
structure used for the AFIT adaptive tracking system. The MMAE is an adaptive
algorithm that optimally combines the estimates of individual Kalman filters that are
tuned for a specific parameter value.
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IIl. Truth Model

3.1 Iniroduction

A "truth model" represents the designer's best raathematical interpretation of
the real world dynamics as applicable to the system of interest. Such a model is the
product of extensive data analysis, shaping filter design and validation in order to be
coniident that it adequately represents the real world, since the performance
evaluation and syét.ematic design procedure is totally dependent upon this
assumption [12]. This truth model description should be as detailed as possible,
given the simulation tools available to the designer. A full-scale “truth model” that
- gives a complete system description of the veal world would require an infinite
dimensional state model. This would be computationally impossible on a digital
- computer; therefore, the dominant churacteristics of the real world system to be
1modeled must be captured using a finite number of states. The truth model will be
the benchmark that will be used as the real world in the design of the elemental
Kalman filters. These elemental Kalman filters are designed by systematically
reducing the truth model io form the filter design model, with this resulting filter
evalpated against the full-state truth medel to ensure that performance specifications -
are satisfied. |
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The dynamics of the target intensity centroid's image on the FLIR detector
plane are a result of true target motion, atmospheric jitter due to distorted infrared
wavefronts, bending/vibration of the optical hardware, and pogo effects of the plume's

oscillations. ' The truth model is composed of the following fourteen states [1,7,22]:

2 target dynamic states (Plume center-of-intensity centroid states)
6 atmospheric states

4 mechanical bending states

2 pogo oscillation states

These dynamics are represented as changes of the image intensity centroid in the
FLIR plane, with the centroid components x, and y, being measured in pixels from the
center of the FOV in the x and y FLIR plane directions. Referring to Figure 3.1, the

position of the target image centroid at any oae time is given by:

X, =X, + T, +X, +x,0080, Q.1
yc uyl fyo *yb “xpsmeg (3.2)
~ where:
X4Ye . = Target image intensity centroid coordinates

%,¥, =  Coordinate deviation due to target dynamics

[

Ly Yo Coordinate deviation due to atunospheric jitter
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Figure 3.1 Plume Intensity Function Prsition on FLIR Image Plane

L, Y, = Coordinate deviation due to bending/vibration of optical
hardware
¥, = Coordinate deviation due to pogo cscillations along the
velocity vector direction
0, = True target orientation angle
Note the minus sign before the resolved pogo component in Equation (3.2) due to the
coordinate definition of the 'LIR coordinate frame. The statesx,, %,, %, %,, ¥, ¥,, and

3y, comprise the output position states which are extracted from an overall state model
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in the form of fourteen coupled scalar stochastic differential equations. The states,
x, and y,, are each modeled by means of first-order differential equations; x;, y,, and
x, are each modeled with second-order differential equations; x, and y, are modeled
with third-order differential equations. These differential equations, when in state-

space format, comprise the dynamics portion of the FLIR tracker truth model.

3.2 Dynamics Model

The fourteen-state model state vector is described by a first-order, stochastic

differential equation given by:

% () = Fr %) + By u: () + Gywr(9) (3.3)
where:

F, = 14 x 14 time-invariant truth model plant matrix
xft) = 14-dimensional truth model state vector

B, = 14 x 2 time-invariant truth model control distribution

matrix

u,{t) = 2-dimensional input vector

G, = 14 x 14 noise distribution matrix (Gy = I)
wt) = 14-dimensional, white Gaussian noise process with mean

and covariance kernel statistics:
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E w0l =0

(3.4)
E tw,(w:t + 0} = @r 800

To simulate the target dynamics model on a digital computer, the "equivalent

discrete-time" solution to Equation (3.3} is given by [16]:

Xp(t,) = O (1) X, (8) + Brugy(t) + Guwy(t) 35)

where the state transition matrix ®,(t,t) is the solution to the differential equation:

dd.(,
df’ LA 36)

with the initial condition: ®.{z,2,) = I, (note that, for constant F,, ®,{¢,¢,) can be

expressed as ¢{i-) ) and:
xdt) = 14-dimensional discrete-time truth model state vector
B, = 14 x 2 discrete-time truth model control distribution matrix
uylt) = 2-dimensional discrete-time input matrix
Gy = 14 x 14 noise discrete-time noise distribution matrix,
(G,=D)
wyt) = 14-dimensional discrete-time, white Gaussian noise process

with mean and covariance statistics:

E wy ()} = 0 .7




E two(twra®) } = Qr

bt

= f ‘Dr(giq - ":)GrQrG: "b: (tm - t)dt 3.8)

]

where @, is defined in Equation (3.4). The discrete-time input distribution matrix

B, is defined as:

‘M

B, = f d’r(tm - T)B; dt (3.9
4

Note that this computation assumes wu,{t) is constant over each sample period:
1w, ()=ur,(t) for all ¢ ¢ [8,, ¢,,,). This input simulates a true constant inertia: velocity

trajectory for the missile.

The fourteen states of the discrete-time truth model are d&ﬁh&d in the ¥ and
y coordinate axes of the FLIR plave as:

Tpup = 1 target state (Plume intesnsily centroid), $ atmespheric
states, 2 bending/vibration states

Yeug = 1 target state (Plume intensity centyoid), 3 atwnospheric
states, 2 bending/vibration states

v, = Two plume pogo states {position and velocity)
*In the FLIR plane except in the direction of the missile velocity vector.
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These fourteen states are augmented together inte the truth model state vector:

]
xﬂ
xr = [ osee (3.1 0)
%5
wl
where:
x = 2-dimensional target dynamics state vector
x, = 6-dimensional atmospheric state vector
x, = 4-dimensional bending/vibration state vector
X, = 2-dimensional plume pogo state vector

- The 14 x 14 discrete-time truth model state transition matvix, ®,, is giv.. by:

0]

5
—
<

(3.11)

&
b
t
4
e
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where partitions correspond to the dimensionality of the states defined above. The

14 x 2 discrete-time truth model distribution matrix B,, is given by:

By =)~ (3.12)

where B, is a 2 x 2 discrete-time contro! distribution matrix. The 14-dimensional

discrete-time truth model white Gaussian noise process w,, is given by:

Wa =p (3.18)

where:
w(t) = 6-dimensional discrete-time, white Gaussian noise related to
atmospheric jitter states
w,(8) = 4-dimensional discrete-time, white Gaussian noise related to

bending states




wyt) = 2-dimensional discrete-time, white Gaussian noise related to

plume pogo states

The block diagonal form of Equation (3.5), as seen in Equations (3.10) - (3.13), allows
the models for target dynamics, atmosphericjitter, bending/vibration, and plume pogo
to be presented separately. The following sections discuss each of the discrete state
models which form the stochastic discrete-time truth model,

3.2,1 Target Dynamics State Description. As depicted in Figure 3.2, the o-8
plane (FLIR image plane) is coincident with the FLIR sensor FOV, and perpendicular
to the LOS vector .. In the simulation, the 3-dimensional target dynamics are
projected onto the FLIR image plane, and the position components of the target's
intensity centroid ave cbtained from the azimuth and elevation displacement angles
(a” and B°). Since the target distance is simulated as 2,000 kilometers, small angle
approximations are used for measuring the angle displacements in the cartesian
coordinate system of the FLIR image plane. These "pseudo” angles, a” and B, ave
Buler angles referenced from the current LOS vector and measured in microradians.
The order of calculation using Euler angles would normally be critical, but large
distance, hence small angle approximation (sina’=a” and cosa’=l) overvides this
constraint. Note that the unusual erientation of the +v,,,, axis in Figure 3.2 allows

the positive z axis to be in the positive e, direction (by the right-hand rule).




a-p Plane

(FLIR)
\\\ " LOS Vector
\/// e
Up
ey North | /
A ex > o \\\ X eun
Intensity Centroid
e, v

East Yeun

Figure 3.2 Target Centroid Image on o-f Plane with “Pseudo” Angles

The linear translational coordinates, x, and y, of Equations (3.1) and (3.2),
locate the target intensity function on the FLIR plane and are measured in pixels of
displacement from the center of the FIIR FOV. The angular and linear
measurements are related by the pivel proportionality constant k,, which is the
angular FOV of a single pixel. Presently, the value of &, is approximately 15
microradians per pixel for long range targets {3,34].

3-10




The derivation of the state space model of the target dynamics assumes that

the azimuth and elevation rates (& and 8, respectively) remain essentially constant

over each sample period Af. Then the discrete-time target dynamics model is:

xt) = 3t) + L3E0 (3.14)
P

Y6 = ¥{8) - —(-‘—3-1(—9-‘1 (3.16)
P

Arranging these equations in state space form yields:

where:

a')

B2

i

i

7 (‘N) = ®t (‘M'tt) % (‘I) + B‘ Uy (‘l) (3.16)

SN [0 I YR T
y . kp (8.17)
, Atl .
N -n i
b b ipw| |° THPY

do.’/d¢, measured in microradians/second and constant over the
time interval A2 -

dp’/dt, measured in micreradians/second and constant over the
time interval Az

Sample time interval, &,,, - ¢, (1/80 sccond)

Pixel proportionality constant (16 microradians/pixel)
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Using these relationships in block form of the overall truth model, by inspection of

Equation (3.11), the upper left block is:

o = [l OJ (3.18)

e
= 0
By=|" (3.19)
At
0 -—
kP.

with the input vector in Equation (3.56) given by:

{& )
Uy =

. (3.20)
B

The minus sign of the lower right term in Equation (3.19) is due to the difference in
they axis orientation between the inertial coordinate frame and the FLIR coordinate

plane.

The two target dynamics states of Equations {3.10) are used to propagate the
missile slong its trgjectory. The input angular velocity values of & and p* are
computed and included in the solution to Eq:.ation (3.17) so as to cause the

simulation of inertial constant velocity target trajectory, as projected onto the FLIR
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image plane. The formulation of these truth model target dynamics states in
deterministic state space form has two advantages. First, Equation (3.17) can be
substituted back into Equation (3.5) to form a single augmented vector difference
equation that defines the truth model. Second, the state space form allows the
addition of white (or time-correlated) noise to Equation (3.17), if a stochastic, rather

than a deterministic dynamics model, is desired.

3.2.2 Atmospheric Jitter Model. ‘lfhg model for the translatinnal displacement
of the intensity furction due to atmospheric disturbances is based on a study by The
Analytic Sciences Corporation {26). Physically, atmospheric disturbances cause
: mﬁ*ared radiation phase front distortions, which, when brought through the optical
system, result in apparent translational shifts of the target. Using power spectral
densiﬁy t.haracbenstacs. the atmospheric Jitier pitenomenon in each FLIR plane sxis
(;irectioxa can be modeled as the output of a third-order shaping filter dxwen _b;(_ white
 Gaussian noise [26]. The Laplace dowain representation of the shaping flter transfer

function is given by:

W Kews 3.21)
W) 5w eyt
where; |
x, = Output of shaping filter (., direction)
w, = Zero-mean, scalar, unit-st.migth white Gaussian noise
K, = Gain, adjusted for desired atmospheric jitter sms value
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Break frequency, 14.14 radians/second

£
[

W = Double-pole break frequency, 6b9.5 radians/second

The atmospheric jitter effects can be modeled similarly in the yg ;z direction,
where y, would be the output of an identical shaping filter to that defined in
Equation (3.21). The two shaping filters are assumed to be independent of each other
and can thus be augmented *o form a six-state model. The linear stochastic

differential equation that describes the atmosphaeric jitter is given by:

50 = Fuso + Gowe ) 6@
where:
F, =  6y6timeinvariant atmospharic jitter plant matrix
0 = 6-dimeﬁaionél atmospheric jitter s&émveﬁmr
G, = 6 x 2 noise dis%ﬁbuti@n:mé&ix -
Sdimensional, indspandent, zem-megn whiteGaussien noisewilh

.
1‘:;_“
B
il

unif sivength and isdependent componsuts duseribed aa:

Ede, ) =06 ) o .
’EmwmmﬂﬁaQMﬁaEﬂaﬁ R
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The six aimospheric states in the state vector correspond to the low frequency pole
and the higher frequency double pole in each of the % ; and the yg ;; directions. The

atmospheric jitter plant matrix is defined in Jordan canonical form as:

o, 0 0 0 O
0 -0, 1 0 0
6 0 -0, 0 O
F = (3.24)
10 € 0 - 0 O
0 0 0 0 -0, 1
0 ¢ ¢ 0 0 -u
The roise distribution matrix G, is :
__Kamlmi 0 |
(@, - @y)?
2
KW, 0
(0 ~ 0p)?
K0 o
(coa -1(::,) 0
G =| 2 (3.25)
0 K0 0,
(@ - )
0 Kamlmg
(0.)1 = wz)z
0 Kawlwg
(0, - @)
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The equivalent discrete-time model for Equation (3.22) is of the form:

X4 (ti+l) =@, (tpptg) Xo (tz) t Wag (ti) (3.26)

The augmented six-state state transition matrix derived from the time-invariant

plant matrix of Equation (3.24) is [26]:

0 ¢, ¢,, 0 0 O
0 0 ¢ 6 0 0
IR D Bue 0 0 (3.27)
0 0 0 0 & O,
10 0 0 0 0 9,
where:

oy = Dy = exp(-o,Af)

Dy = Dy = exp(-w,Az)

Qg = Dy = At exp(-,Af)

by = Pyp = exp(-m,AL)

A = sample time interval, (¢,,, - 2)
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The 6-dimensicnal, zero-mean, discrete-time, white, Gaussian noise w(¢) has

statistics defined as:

E{ w,d(ti)} = 0

E { Weq (t‘)wad (t()r} = Qad
. (3.28)
< [®att, - ©/6aQ T ®F(y - T
4

The individual components of @, are not included here due to their length and

complexity. The reader may refer to the software for a full description [25].

For the approximated two-state atmospheric jitter model for use in the filter
development, only a single-pole shaping filter is used in each direction to produce the
arproximated Power Spectral Density (PSD). The state space equations are
truncated from six to two states with only the first break frequency, o, used in each
direction, The plant matrix in Equation (3.24) becomes a 2 x 2 with -, as the
diagonal tarms and Equation (3.26) also becomes 2 x 2 with K o, on the disgonal.

9.2.8 Bending/Vibration Model. 'The mechanical bending states were added
to the truth model to account for the vibrational effects in the FLIR data that occur
when the sensor is mounted on a moving, non-rigid optical platform [12]). Based on
tests at the AFWL (now Phillips Laberatory), it was concluded in previous research
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[12] that bending effects in both the %y ; and yp ; direction can be represented by a
second order shaping filter, driven by white Gaussian noise. The Laplace domain

transfer function for each of these bending models is:

50 Kyom (3.29)
W) 52+ 20,8 + g
where:
x = FLIR plane positional offset (xy  direction) due to mechanical
bending disturbance
w, = Zero-mean, unit strength, white Gaussian noise
K, = Gain adjustment to obtain desired rms bending output; K,* =5
x 107
(Note: K,” is given here hecause the strength of the bending white
noise is expressed in terms of this parameter, rather than X))
[ = Damping coefficient, equal to 0.16

Undamped natural frequency for bending, (w=n rad/sec)

it

The FLIR plane positional offset in the yyy, direction, y,, is identically modeled
with the shaping filter defined in Equation (3.29). The two shaping filters are
assumed to be independent of each other and can thus be augmented to form a four-
state mode. The linear stochastic differential equation that describes the
bending/vibration is given by:
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%) = Fpx, (1) + Gywy () (3.30)

4 x 4 time-invariant bending plant matrix

4-dimensional bending state vector

4 x 2 noise distribution matrix

2-dimensional, white Gaussian noise process with unit strength

components that are independent of each other:

E (w,, (t)} =0

E vy (Iwy (407} = @y 8(3) = L‘) ‘j 3(c) (3.31)

The bending/vibration plant matrix is defined as:

0 1 0 0
2
~Wy 200, 0 0
P, = 3.32
e 0 0 1 (.32)
| 0 0 -0.),2.5 -2cb(°nb_
The noise distribution matrix G, is:
0 \
mﬁ,ii‘, 0
Gy =| .
» 0 0 (3.33)
2
Doy
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The equivalent discrete-time model for Equation (3.20) is of he form:

X3 (t‘+1) = @b (t:q-ptg)xb (ti) + Wag (ti) | | (3.34)

where:

o&'11 Qb12 0 0 '
O G 0 O
0 0 & &
10 0 0, O,

®,(A0 = - {3.36)

and:
@y = Oy = expl-o,At)cos(w,At + (T /w,)sin(w,AL))
Oy = Dy =  expl-0,A)[(L/w,)sin(w,Al)]
Gy = Dy = - expl-o,A(w,)sin(w,Al)]
s = D = expl-c,A)cos(w,AL) « (0/w,)sinlw,AL))

A = Sample time interval, (¢,,,-¢))

o, = Real part of the root of the chavacteristic equation in Equation
(3.29), (o, = 0.47124 second™)

®w = Imaginary part of the root of the characteristic equation in

Equation (3.29), (e, = 3.106056 radians/second)

The 4-dimensional, discrete-time, white Gaussian noise process vector w,y(t) has

mean and covariance statistics:
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E{ wbd(ti)} = @

E{ Wad (ti)wbd (tg)r} =
hn (3.36)
= 80, - 96,06, O @, - )
&

3.2.4 Plume Pogo Model. To account for the oscillatory nature of a typical
missile plume in the beost phase, a plume pogo model was developed [34,. A second-
order Gauss-Markov medel was generated using physical insight, and visual
observation of the poge phenomenon. The model allows for the study of the
amplitude and frequency chavacteristics of the dscillatory nature of the plume, and
of the effect upon tracking & missils ueing a Kalman flter.

The teansfer function of the plume pogo model is described in the Laplace

domais 8s:
X (s} R Kol
£ i LY 5 (3‘37)
W,{S}« ' fsz + 2,05 + 0
where:
x, = Plume pogo shaping filter output along the direction of the

welocity vector

w, =  Zero-meua, unit strength, white Gaussian noise
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{, =  Assumed damping coefficient, ({ = 0.05)
®, = Nominal undamped natural frequeacy for pogo; assumed range is

0.1-10 Hertz, with a nominal value of 1.0 Hertz

K, = Gain adjustment to obtain desired rms pogo amplitude
determined by [40]:
K =20 |2 3.29)
P P ©
"
where:
g, = Desired rms pogo along the velocity vector

The linear stochastic differential equation that describes the plume pogo is given in
state space form as:

(0 = W, (8 (3.39)

0 1 [ ©
# +
-m:, '2€y‘°v d lemi,

where:
x,(8) = 2-dimensional pogo state vector consposed of pogo poeition and
velocity states

w,(¢) = 1.dimensional zere-mean, white Saussian noise with statistics:

E (wp(:)} =Q
E {w,(t)w’(t t) =Q8E -l Q=1

3.40)
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The equivalent discrete-time model for Equation (3.39) is of the form:

() = Opt) % () + wu®) (3.41)

t.) QPH(At) ‘Dpzz(At) £ + W) 3.42)
LAURY pé .
PR 08 @ a0 P ‘
where:
_ 2

o st = ! p(m,[ T M{B]]

‘/l - Cps Cp
0,1(Af) = ———exp(-¢,0,Asinlo g1 - 289

el =6 (3.43)

0,1,(88) = ——2—exp(-{, 0, Adsif0 /1 - AL
Rl me"‘ P )sin(m,, p )

Ow(At) == cﬁaxp( C,m,AtNr{m,l C,At uvm{ - C, ]+ u]

The 2-dimensional, discrete-time, white Gaussian noise process w,(t) has mean and

covariance statistics:
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E {wpd (t‘) =0

E s (t)Wpa(8)"} = Qi
fit (3.44)
) f ®, (., - 96, Q,G; ¥; (¢, - Tt

4

The 2-dimensional pogo state vector defines the position of the plume image
intensity centroid relative to the equilibrium point of oscillation, and its velocity
component due to the pogo phenomenon along the longitudinal axis of the missile.
For the simulation, it is assumed that the velocity vector lies coincident with the
longitudinal axis of the hardbody. Asshown in Figure 1.6, the plume oscillates about
an equilibrium point also located on the longitudinal axis. This equilibrium point i
defined by the initial positions of the two intensity functions in the target coordinate
frame (to be discussed Section 3.3.1), and remains at a constant distance from the
hardbody center-of-mass throughout the simulation (the spatial relationship of the
intensity functions can be seen in Figure 3.3 in Section 3.3.1). The crescent-shaped
plume represents one of many equal-intensity contour lines of the actual plume. The
angle of attack and sideslip angle of the missile ave also assumed negligible, and have

zero values for the simulation [34),
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3.3 Measurement Models

It is crucial for a simulation tool to have accurate models concerning the
measurement updates to be used. These models must be products of experience in
using the actual physical devices, tempered with the reality in dealing with computer
simulations similar to this research thesis. There are two different measurement
models that are used in this research. The first model is the measurement update
from the FLIR 8 x 8 tracking window receiving radiation from the plume intensity
centroid. This update comes from comparing (in an enhanced correlation algorithm)
the truth-model-generated measurement, with the template that is generated from the
state estimate of the previous sample period. This correlator then produces a
"“measurement’ that goes to the Kalman filter bank as a 2-dimensional vector, x4, and
¥.» 88 the offset necessary to provide the highest correlation between the data and the
template in the o-p (FLIR) plane coordinates,

The second measurement is generated with returns from the Low-Energy Laser
(LEL) that uses the updated estimates from the FLIR measurement to “paint” the
hardbody target using the filter generated plume centroid coordinates as a starting
point. The LEL illuminates along the filter-estimated velocity vector to locate the two
endpoints of the missile hardbody. These endpoint coordinates are then used to form
a noise corrupted “center-of-mass’ one-dimeunsional LEL measurement update.
Section 3.3.1 describes the FLIR update while Sections 3.3.2 and 3.3.3 detail the LEL
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update along with the Doppler effect in the returned signal that is used to determine

where the endpoints of the hardbody are located.

3.3.1 Flir Model. The FLIR senscr :model is composed of an 8 x 8 pixel array
“"tracking window" extracted from the total array of 300 x 500 pixels. The missile
plume is projected onto the FLIR focal plane, with its chavacteristic crescent-shaped
intensity function formed as the difference of two bivariate Gaussian intensity

functions (the difference is clipped to zero if negative), as shown in Figure 3.3. This

a~p Plane (FLIR)

Target Plume F@m&dby -

Subtracting Tealling"fram | © X
"Leading Gausstan™ "~ 1"~ 1580 |
In tylecﬁpn \ ‘ \-{
: » X
SR );,':fi, .LL 1" Pluie injensity Centrold
8x 8 Array o
of Variable
Intansly Pixsls

v +ypua

Figure 3.3 Composite Plume Intensity Function on FLIR Plane
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model depends upon knowledge of several parameters: the size of the major and
minor axes of the elliptical contours of each bivariate Gaussian function, and the
orientation of the principal axes in the FLIR image plane (the major axis of each
ellipse points along the velocity vector in the FLIR plane). The target intensity
function so obtained is corrupted by spatially correlated and temporally uncorrelated
background noise and spatially and temporally uncorrelated internal FLIR noise,
according to models of actual data taken from a FLIR sensor looking at various
backgrounds [32].

For each pixel in the FLIR FOV (the 8 x 8 array "tracking window"), the
target's intensity function, correlated background noise, and FLIR internal noice are
added together to produce an intensity measurement, For the 8 rows and 8 columns
of the FOV, the intensity messurement corresponding to the pixel in the j* row and
k* column at sampling time ¢, is given by:

Zﬁ(f‘) a -::-‘ I U; Exdﬁw(‘gwm(ﬂ)]
o sy

I B0 ats§ Wi 0)] iy (8.46)

+ uﬁ(t‘.) + bﬁ(:,)

where:

z{t) Output of pixel in the j* row and &* column

I

a4, = Area of one pixel
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I,I, = Intensity function of first ané second Gaussian intensity function,
respectively, of Figure 3.3
Coordinates of any point within pixel jk

&
<
i

Xpekts Yook = Coordinates of maximum point of first Gaussian intensity
function
Tpeakds Ypeake = Coordinates of maximum point of sectnd Gaussian intensity
function
nit) =  Effect of internal FLIR sensor noise on jk* pixel
bu(t) =  Effect on spatially correlated background noise on j2* pixal

The sensor error, n,(¢), is the result of thermal noise and dark current in the
IR detectors (pixels). This ervor is assumed to be both temporally and spatially
uncorrelated [34].

The background noise, b,(f), was observed in the FLIR data by AFWL
personnel during a tracking operation [8]. It is represented as a spatially corvelated
noise with radial symumetry, with a corvelation that decays exponentially. Hamly and
Jensen [8) concluded that spatial corvelation can be depicted as a correlation distance

~ of approximately two pixels in the FLIR plane, and simulated by maintaining non-
zero correlation coefficients between each pixel and its two closest neighbors
symmetrically in all directions. In that two-pixel distance, the correlation decays
exponentially to one-tenth of its peak value. |
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The generation of spatially correlated white Gaussian noises is accomplished
by allowing non-zere cross correlations between the measurement noises, by(2),
associated with each of the 64 pixels from the 8 x 8 pizel FLIR FOV. The correlated
measurement noise in Equation (3.45) is given as:

bi) = 84-dimensional vector of spatiaily correlated noise with statistics:

E{b() =0
E{bt)b(t)"} = R §,

(3.46)

where R is a 64 x 64 measurement noise covariance matrix and d; is the Kronecker
delta, defined to assume the value of one if i = j and zero otherwise. This matrix

describes the spatial correlation between pixels, and is given by [13]:

1 rl’z rl,s s rl’“

on 1 fa = Tog
R =2 e T2 1 = P (347)

Toar Toaz Tesg = 1|
where o is the variance of cach scalar noise and the correlation coefficients r;, are
evaluated to refiect the radiaily symmetric, exponentially decaying pattern. The

spatially correlated background noise &) is simulated as:

b(t‘) = c‘/ﬁ b'(t‘) A (3.48)

where;
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C\/_ = Cholesky square root

b)) = 64-dimensional vector of readilv simulated discrete, indspendent

white Gaussian noise with statistics:

E{b@)=0
(3.49)
E{0 el ) =18,

3.3.2 Low-Energy Laser Speckle Reflection Model. The low-energy speckle
reflection model evolved through the work accomplished by Eden and Evans [3,4].
The model makes no attempt to simulate the detailed physical phenomena associated
with the speckle return of the reflected laser from the plume or hardbody. Rather,
the model simulates the reflectivity information from the hardbody speckle return

which would be derived by speckle detection circuitry.

The low-energy laser speckle reflection model simulates a linear measurement
to the Kalman filter for estimating the offset distance from the plume intensity
centroid to the hardbody center-of-mass along the vehicle's FLIR image plane velocity
vector. The first attempt to model the laser speckle return consisted of the hardbody
represented as a rectangle with a binary-valued reflectivity function, which provided
& binary indication of the hardbody whenever successful interception by the laser
beam occurred [3]. With this model, speckle reflection information was equally
obtained over the entire vehicle. This was followed by an enhanced, 3-dimensional
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reflectivity model which accounted for the realistic distribution of the laser speckle
return according to the curvature and aspect angle of the hardbody [4]. The 3-
dimensional mode! is employed for this research since the Doppler return is also a
function of reflectivity [9,38,39,44]. The following subsections discuss the
development of Evans' 3-dimensional hardbody reflectivity model and introduce the

plume reflectance model.

3.3.2.1 The Hardbody Reflectivity Model. The 3-dimensional reflectivity model
was developed by Evans [4] based upon his analysis of empirical data obtained from
the 6585" Test Group, Holloman AFB, New Mexico [6]. The data illustrates the
return power (expressed in decibels-square meters) as a function of radar cross
section (RCS) from a 20 x 249 inch cylinder with hemispherical endcaps as it was
rotated longitudinally in the plane of the radar source. RCS is defined as the
projected area of a metal sphere which would return the same echo signal as the
target, had the sphere been substituted for the target [38]. The data showed peak
values at 90° and 270°, where the cylinder was orthogonal to the line of sight, and
sharp dropoffs in reflection as the angle deviated frona the orthogonal condition. The
reflectivity model, shown relative to the FLIR image plane in Figure 3.4, modifies the
previous rectangular model to include 29 discrete weighted line segments in the true
velocity vector direction along the length of the moedel. Two functions define the
hardbody reflectivity model: thecross sectional function and thelongitudinal function.

3-31




V.ios

A
Reflectivity Model with
29 Discrete Weighted
«-p Plane Line Segments
(FLIR) Vt
LOS
|/ >Vector
True Center-of-Mass
+X o M
v +yFLIR

True Location of
Intenslity Centroid

Figure 3.4 3-d Hardbody Reflectivity Model Relative to FLIR Image Plane

Each discrete weighted line represents a cross-sectional reflectivity function
which duplicates the empirical data from Holloman. The reflectivity function models
the curvature by defining the strength of the reflected signal at each discrete line,
where the amplitude of the reflected rignal is highest along the missile centerline and
discretely tapers towards the hardbody sides in 0.1 meter increments. The discrete
implementation of the crogs-sectional reflectivity function for the simulation is shown
in Figure 3.6. Note the peak reflection of the cross-sectional reflectivity function's

center is represented by an arbitrary value of 60 units of reflection magnitude [4).
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Figure 3.5 Discrete Implementation of Cross-Sectional Reflectivity Function [9]

The remaining line segments are scaled accordingly to match the empirical data. The

‘veflectivity function alse yields zero or significantly reduced reflection for those
portions of the original rectangle far from the missile centerline, so the effective area
of the hardbody is less than that of the binary model,

Note that, in Figure 3.4, v, is the true velocity, not necessarily in the FLIR
image plane, and v, is its component jn the FLIR imwage plane. The angle ¥,
defined as the angle between the inertial velocity vector and the FLIR plane, is
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utilized by the longitudinal reflectivity function to provide a scaling factor of the total
reflection function if the missile centerline is oriented other than normal to the FLIR
plane. Similar to the cross-sectional reflectivity function, the longitudinal function
assigns a scaling factor to the reflected signal based upon the angular aspect of the

target velocity.

Another factor in determining the received speckle reflection is the sensitivity
level of the low-energy laser sensor. This sensitivity is represented in the simulation
as a threshold limit below which the low-energy laser sensor cannot detect the
reflection return. To illustrate the function of the sensor sensitivity factor, consider
the hardbody at an aspect angle y relative to the FLIR image plane. In this
orientation, the maximum amount of reflection is obtained .o the simulation by
multiplying the peak reflection value (60 units of magnitude) by an appropriate
scaling factor [4]. The sensitivity threshold function p(') is defined as a function of
a threshold reflection magnitude m.. If a reflection magnitude is less than m,, the
reflective output is clipped to zero (see defining equation for w() in the next
paragraph). Therefore, u(') represents the sensor's ability to discern a target's return
signal [4].

The total reflectivity function is given by [4]:
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R, = 2": B [AF)] (3.50)

i=]

where:
Ry, = Total reflectivity received by the low energy sensor
n = Number of line segments crossed by laser scan
ut) = Sensitivity threshold function of low-energy sensor:

@ - {x fxzm

3 0 ifx<m,

4, = Cross-sectional reflectivity function's reflection amplitude of the
i discrete line segment

My Longitudinal reflectivity function, where y is the angle between

i

target v, and the a-p plane

As the hardbody traverses along its trajectory in 3-dimensional inertial space,
the projection of its motion onto the 2-dimensional FLIR image plane generates the
corresponding propagation of the first two states in the truth model. Similarly, to
simulate the center-of-mass measurements in terms of FLIR plane variables, the
hardbody models are also prajected onto the 2-dimensional FLIR plane. Referring to
Figure 3.6, the geometry for projection is described by:

MLy, = ML, cosy (3.61)
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Figure 3.6 Projection Geometry onto FLIR Image Plane
where:
MLy = FLIR plane projection of missile length
ML,y = True missile length in pixels

y=  Angle between v, (velocity vector of the target) and the
FLIR plane

Similarly, since the hardbody longitudinal axis is assumed to be aligned with the
velocity vector (along which the offset is aligned), the offset between the hardbody
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and the plume is scaled by the same factor when projected onto the FLIR plane.
Once the projection is accomplished, the hardbody is located on the FLIR plane by
offsetting the hardbody's center (midway between the projected endpoints) from the
truth model intensity centroid along the truth model velocity vector, V ; oq, by [(Offset

distance,,,)cosyl.

The subtended arc of the low power laser beam is simulated as a rectangle
with the smaller side represented as the finite width of a dithered laser beam after
it has traveled 2,000 kilometers. Shown in Figure 3.7 are the ideal conditions for the
laser scan. (Generally, the filter estimates of the intensity centroid position, the
orientation angle, and the velocity vector are not equal to the truth model values.)
One end of the long centerline of laser scan rectangle is located at the estimated
intensity centroid, positioned at the center of the FLIR FOV. The other end of the
laser scan rectangle is taken as three times the truth model offset distance between
the intensity centroid and the hardbody center-of-mass (3 x 87.6 = 262.6 meters or
8.76 pixels) to ensure the laser scan is long enough to intercept the hardbody, despite
the effects of "pogo.” The second endpoint of the laser rectangle along its centerline

is given as:

X =X ¥Lcos9
N (3.62)
yp:’yc"‘Lsmef

where:
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Figure 3.7 Ideal Low-Energy Laser Scan

XY = FLIR plane coordinates of the second end of the centerline of the
laser rectangle
Xpy, = FLIR plane intensity centroid coordinates
L = Length of the laser rectangle
6, =  Six-state (FLIR) filter estimate of velocity orientation angle

As mentioned earlier, the FLIR filter's imprecise centering of the intensity
centroid caused inadequate hardbody illumination rates by the laser scan in the
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original research by Eden [3]). (The estimated velocit, v _tor, and thus the estimated
orientation angle, 0, were estimated precisely, how .er.) As a result, an ad hoc
sweep routine was developed, shown in Figure 3.8, tli.w. offsets the initial laser scan
clockwise from the estimated velocity vector. The laser scans are swept
counterclockwise in order to assure illumination of the entire body. Evans found

that, without pogo, a 30° offset was required, and 35° with pogo applied [4].

Ye- v
Center-of-Mass

3-d Hardbody Rectangle

True Location of \

Intensity Centroid
Offset Angle

Low-Energy Laser Scan

. * N
. \ '
v \ h
N, ' x
N \ I
\ i N

.. Filter Estimate of
Intensity Centrold

FUR

Figure 3.8 Sweep Techniques of Laser Scan
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3.3.2.2 Plume Reflectance Model. Prior to Herrera's research [9], the concept
of illuminating the missile hardbody with a low-energy laser and analyzing the
speckle return (also called backscatter radiation) was predicated upon the assumption
that the missile plume would not possess a speckle return similar to the hardbody's,
when illuminated by a low-energy laser. The laser scan travels along the intensi'ty
centroid's velocity vector until a speckle return is received, signifying the start of the
metallic hardbody. The scan continues along the hardbody until no backscatter
exists, signaling the end of the hardbody, and thus information is provided to
calculate the center-of-mass. However, experimental data confirmed the presence of
reflectance from solid-propellant rocket motors [29] which significantly alters the

previous conception.

Experimental programs at the Arnold Engineering and Development Center
(AEDCQ), in Tennessee, have observed and measured laser backscatter radiation from
the exhaust plume of a solid-propellant rocket motor [29]. The measurements of the
plume's backscatter radiation were found to be on the same order of magnitude and
comparable to that of a hardbedy (1], due to aluminum particles and other substances
in the plume. During the STARLAB flight experiment, which collected plume data
under actual flight conditions, = rocket booster and its exhaust plume were "painted”
by & low energy laser. Video recordings of the flight experiment showed the
randomized appearance and low-frequency oscillation of the plume's reflectance [1).
The existence of plume reflectance creates an ambiguity that impedes the precision |




acking necessary to define the plume/hardbody interface. The plume reflectance
causes a bias in the estimated hardbody location, biased longitudinally toward the

plume.

Since for this thesis, the Doppler measurement model was utilized instead of
speckle, the offset measurements from the LEL were assumed to be unbiased (see
next section). However, this section has been included in the thesis description for
continuity and, since the bias effect is still implemented in the software if the speckle
return model is used, it is retained as reference for future researchers.

The purpose of the plume reflectance model is to simulate the presence of
plume backscatter radiation and its effect upon the offset measurement. Figure 3.9
depicts the reflectance from both the plume and hardbody, as observed in the
- STARLAB flight experiment. From the viewpoint of the speckle return sensor, the
plume reflectance has the effect of elengating the apparent missile hardbody in the
direction ¢’ the plume. The plume reflectance model simulates the hardbody
elongation by applying a bias to the eifset measurement in the direction of the
clongation, defined as in the opposite direction of the estimated velocity vector. In
the simulation, the model first receives the offset measurement as determined by the
low-energy speckle reflection model. The biased measurement, X .., 16 formed by
converting the bias into pixels, projecting it onto the FLIR plane, and subtracting it
from the original offset measurement. The biased offset measurement is then
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Figure 3.9 Biased Offset Measurement Caused by Plume Reflectance

provided to the filter for its update. The plume reflectance model is given by:

b .
X otubias © Fofer " (H—}my | (3.63)

where’

Xfibias Biased offset measurement due to plume speckle reflectance

1]

Offset measurement from the low-energy reflectivity uiodel,

without plume speckle reflectance effect
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= Bias value

R = Range

k, = Pixel proportionality constant (16 microradians/pixel)

Yy = Angle between 3-dimensional inertial space velocity vector a..d
the FLIR image plane

The randomized nature of the plume's reflectance is modeled as a percentage
of time that appearance of the bias occurs. A random number generator, of unifermly
distributed random variable output, provides the logic to turn the bias "on and off"
according to the percen.age selected. In correspondence with Phillips Laberatory
personnel, it was found that a bias of approximately 25-30 meters with an appeararce

percentage of 90 - 956% was observed during the STARLAB flight experiment [1].

3.3.3 The Doppler Measurement Model. The Doppler measurement model
simulates the offset measurements that are obtained by exploiting the differer.ces
between hardbody and plume-induced Doppler returns. As with the laser speckle
return research of Eden and Evans, the modeling of the actual physical properties of
the Doppler phenomenon will not be attempted. Instead, modeling efforts will entail
simulating the information that would be available from Doppler detection circuits
as measurement data for the Kalman filter, The following subsections briefly
introduce and describe the basic concepts of the Doppler phenomenon, as applicable

to the properties of the hardbody-induced and plume-induced Doppler returns. The
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treatment of the Doppler phenomenon is not intended to be rigorous and reflects the
level of understanding necessary to appreciate the manner with which the Doppler
returns are employed to generate an offset measurement relative to the intensity
centroid. For a rigorous development of the Doppler phenomenon, refer to Principles
and Practice of Laser-Doppler Anemometry by F. Durst, A. Melling, and J. H.

Whitelaw [2], and The Doppler Effect by T. P. Gill [7].

8.8.3.1 The Doppler Effect. Many define the Doppler effect as a shift in the
frequency of a wave radiated, reflected, or received by an object in motion [38,39].
From a radar, Doppler shifts are produced by the relative motion between the radar
and the target. The radar may use a pulsed, coherent laser beam that propagates the
electromagnetic energy to "paint” the target of interest. If the target is in motion and
illuminated by a low-energy laser, the returned signal (or backscatter) is represented
as a time-delayed, Doppler-shifted version of the transmitted signal, wherein the
amount of Doppler shift is proportional to the reflecting target's range rate relative
to the laser transmitter [38,59]. A continuous transmitted signal is given as:

E, = E, cos( 2nf) | (8.64)
For vhis transmitted signal, the echo signal from a moving tavget will be [38):
E, = k Egoos [ 2n), + £ + 9] (3.66)

where:

E, Amplitude of transmitted signal
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fo
E = Reflected signal

Transmitted frequency

= An attenuation constant that represents losses incurred during

propagation
i = Doppler frequency shift
) = A phase shift, dependent upon the range of detection

Figure 3.10 shows the frequency spectrum of the return signal, shifted from the

transmitted frequency, f,, by the Doppler shift, f;, given by [38]:

Ampiitude
Spectra of Received Signals
l Frequen 8) No Doppler Shift
fo equency No Relative Moticn

o b
r , Frequency ) Approaching Target

0

o |
L1 Frequency ¢) Receding Target
0

Figure 3.10 Spectra of Received Signals [43)
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2 ] (3.56)

tf, = :T = % .
where:
v, = Relative velocity of target with respect to transmitter
A= Transmitted wavelength
¢ =  Velocity of signal propagation (3 x 10° meters/second)

The relative velocity, v,, is expressed as:
v, = v siny (8.67)

where:
v = Target velocity in 3-dimensional inertial space

angle between the target trajectory and plane perpendicular to

-
1]

the laser LOS (FLIR plane; see Figure 3.6)
The plus sign associated with the Doppler frequency shift applies if the distance
between target and transmitter is decressing (approaching target), and conversely,

the minus sign applies if the distance is increasing (receding target).

As shown in Figure 3.10, the frequency spectrum of a continuous reflected
sinusoidal signal appears us a straight vertical line. The scenario proposed by the
Phillips Laboralory calls for a pulsed and coherent laser beam to illuminate & ballistic
boosting target [1]. Both these laser properties have an impact upon the nature of
the returned spectruni.
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For illustration purposes, Figure 3.11 shows a train of independent pulses
having a pulse width (PW) of 0.001 seconds and a constant pulse repetition frequency
(PRF), along with its associated frequency spectrum. Because the pulses are "on" a
fraction of the time, the amplitude of the frequency spectrum decreases but is still
centered at f,. The total power is in fact distributed over a band of frequencies
extending from 1000 Hz below f, to 1000 Hz above it, for a null-to-null bandwidth of

2 KHz. The bandwidth (i.e. spectrum spread), is inversely proportional to the pulse

width and is given by [39]:
1/1000 sec (1)
—3 e
Time
= PR K —i e
A=¢c| f
Amplitude 0
f - 1000 Hz f + 1000 Hz
\ l,
0
l‘__.m....).,..__ﬂ
BWan

Figure 8.11 Pulsed Signal Fregquency Spectrum
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(3.58)

aln

where:

BW Null-to-null bandwidth

Pulse width {seconds)

a
1l

By coherence is meant a consistency, or continuity, in the phase of a signal
from one pulse to the next {39]. The term ¢ in Equation (3.55) represents the phase
shift, which is a function of the range during detection. Figure 3.12 illustrates the
difference between the frequency spectrum of a coherent signal and a non-coherent
signal, With non-cocherent transmission, the signal's central spectral lobe is spread
over a band of frequencies. In contrast, the spectrum associated with coherent
transmission shows the signal appearing at many points. Its spectrum, in fact,
consists of a series of evenly spaced lines, wherein the interval between the spectral
lines equals (1/PRF) [39]. Further comparison reveals that the coherent frequency
spectrum is stronger (having & higher amplitude) than the non-coherent signsl
because the energy has been concentrated into a few narrow lines. In addition, the
envelope within which these lines fit has the same shape, [sin(x)/x], and the same
null-to-null BW, 2/+, as the spectrum of the non-coherent signal.

3.3.3.2 Hardbody Doppler Return. At a range of 2,000 kilometers, the missile
hardbody can be defined as a smooth, dense single point target. It is assumed that
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Figure 3.12 Spectra of Coherent and Non-coherent Pulsed Signals [44]

the velocity of any point of the hardbody due to the hardbody's rotational motion is
much less than the hardbody's linear velocity and is considered negligible. It is also
assumed that the target hardbody's velocity remains constant over the duration of a
tranamitted pulse. With such a target, the spectrum of the return will have a
bandwidth that closely approximates (2/1), and centered about the Doppler-shifted

frequency corresponding to the relative vate.
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3.3.3.3 Plume Doppler Return. The case of the exhaust plume can be
represented as the situation in which numerous point targets are imaged together.
The plume can be described as a randomly distributed array of point targets which
are dispersed in range and velocity. The plume particulates are small (submicron in
size), nonspherical and nonhomogeneous, and their size and spatial distribution vary
strongly with the radial distance from the plume axis [9,45]. Typically, larger
particles are concentrated near the plume's symmetry axis, and in contrast to the
hardbody, the numerous exhaust plume particles exhibit numerous velocity

orientations over the duration of a laser pulse.

When the laser beam illuminates such a large number of point targets, the
superposition of each particle's backscatter radiation within the lasi. beamwidth will
form the resultant return [44,45]. Thus, the Doppler frequency spectrum will be
quite broad, due to the numerous Doppler shifts of the numerous plume particulate
velocities [1,8]. This Doppler spreading of spectral lines arises from the fact that
backscatter from a particulate will be shifted in frequency in 8 manner depending on
thes. approach or recession of the particulate as seen from the tracker location. The
plume experimental programs at AEDC have observed and measured plume Doppler
reflectance frequeucy spectrums with null-to-null BWs of 2 - 6 GHz [28]). This
sharply contrasts the hardbody-induced return, for which the spectrum null-to-null
BW equals 2/x, with an order of magnitude in MHz, However, one other significant
difference exists between the hardbody and plume-induced Doppler returns,

3-60




Generally, the velocity of the plume will be oriented 180° from the hardbody's

velocity [1,9]. This is shown in Figure 3.13(a), where the respective Doppler
frequency shifts will be opposite in sign. A majority of the observed plume particles
would have a relative radial velocity towards the tracker and the resultant return
would have a negative Doppler frequency shift. Conversely, the hardbody as shown
is receding from the tracker and will thus exhibit a positive Doppler frequency shift.

Hence, by exploiting the two differences in plume and hardbody-induced Doppler

Amplitude a) Doppler Return Spectra

of Plume and Hardbody,
Showing Opposite Doppler
Shifts

| | / | Frequency

|
, f f+f
9 pume 0 0" "d Harduody

b) Overlap of Specira
when Velocity Vector is
Normal to Laser LOS

/ i Frequency

Figure 3.18 Spectra ¢f Plume and Hardbody-Induced Doppler Returns
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returns, namely center frequency and breadth of the two corresponding spectra,

precise tracking and definition of the plume/hardbody interface can be realized.

However, the angle v, of which the relative velocity v, is a function, has an
impact upon the discernability between the plume and the hardbody-induced Doppler
shifts. Referring to Equation (3.57), as y approaches 0°, where the plume and
hardbody velocity vectors become orthogonal to the LOS vector, the radial velocity of
the target relative to the tracker approaches nil and no Doppler shift is produced.
Figure 3.18(b) shows that, under these circumstances, the return spectra of the plume
and hardbody converge towards the transmitted frequency and eventually overlap,
obscuring most of the hardbody-induced Doppler return. This imperfect ability to
detect the hardbody spectrum, as distinct from the plume spectrum, will be addressed

in the next section, which develops the Doppler measurement model.

The measurement modeling approach taken by this thesis is to consider the
usual circumstance of the Doppler return of the hardbody being significantly
distinctive from that of the plume. The Doppler detector must be designed to filter
out the broader plume return and only pass the hardbody return, a function
achievable with a Doppler matched filter design [9,38]). This vital concept signifies
that the Doppler truth measurement model can neglect the plume's Doppler return
and solely simulate the hardbody-induced Doppler return. Although there may be
instances of no apparent distinction between the plume and hardbody spectra, these
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occurrences will be embodied in a probability-of-miss parameter (P,,), to be discussed

later.

Since Doppler information is obtainable from backscatter radiation, which
includes the speckle return [38,39], a 3-d hardbody reflectivity model, detailed in
Section 3.3.2, is utilized in this modeling approach. However, in contrast to the laser
speckle return measurement model, the biasing effect caused by the plume's
reflectance is no longer applicable and is not incorporated into the Doppler
measurement model. As a result, the center-of-mass measurement and offset
measurement generated by the Doppler measurement model will simulate a zero-

mean error-corrupted version of the true offset measurement, 4, for the filter.

3.3.3.4 Doppler Measurement Noises. The Phillips Laboratory sponsored a
study in which Dr. Paul McManamon investigated feasible and implementable
wavelengths to illuminate the plume and hardbody, while meeting the space tracking
scenario requirements [9]. His choice of wavelengths, based upon ranges, power
requirements, hardbody temperatures, and tracking accuracies, range from 0.63 to
15 um. Fo this study, the shortest wavelength 0.63 pm (which provided the greatest
precision in the measured value) was selected for use in a8 seﬁsitiviby anslysis. The

tracking inaccuracies associated with this wavelength are ﬁdnpt&d in the Doppler

measurement model to corrupt the offset measurement reslistically.




The tracking accuracy for a laser beam is a function of the amount of power,
or amplitude, of the return signal. The return signal, in turn, is dependent upon
ieveral variables, among which are the target's radar cross section (RCS) and the
location of the target in the laser beam [9,33,39]. A target ideally located in the
center of the laser beam reflects the maximum return signal (i.e., optimum signal-to-
noise ratio, SNR). If the target falls off to the side of the beam's center, then less
energy hits the target. The degree of tracking accuracy then becomes a question of,
how far off to the side can a target be to reflect the signal at an acceptable level?

Dr. McManamon addressed this issue [9] by first defining the acceptable beam
diffraction limit as the angle within the 3 db power points of the laser beam. He

defines the diffraction limit as:
6., = 108 (3.59)
w = 0 ‘a‘ o

where:

O, = Half angle defined from beam ceater to half-power points, in

radians '
A = Wavelength, in meters
d = Radar aperture, in meters

One then determines the acceptable level of signal loss within the 0,,, limits. In Dz,

McManamon's assessmetit, a 10% loss can be tolerated, and he determined that this




loss is reflected by decreasing the diffraction limit by a factor of 2.667 [9]. Equation

(3.59) yields:
g - Vo (3.60)
B 2667
where:
0 = Allowed diffraction limit for 10% signal loes

The measurement noise for the Doppler measurement modei thus consists of
the tracking angle errors, in pixels, as a function of the diffraction limited beam and
acceptable signal-to-noise ratio (SNR), Herrera's study [9) included the following
values of SNR for the sensitivity analysis: 10, 8, 6, and 4. The relationship i given

as [9):
r = 3;3:7327; (3.61)
where:
8, =  rmstracking angle exvors in pixels
0, = = Besm diffraotion limit
SNR = Sigualtouoiseratio
B, = Pixel proportionlity constant, 16 pradsipixel

In addition to providing the ofiset messurement, the Doppler measureinent

- model also simulates a return signal probability-of-miss, P,.. The probability-of-xaiss
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encompasses two cases. First, the probability-of-miss takes into account the situation
in which the hardbody is illuminated by the low-energy laser, but the return is not
detected due to attenuation of the returning signal as it propagates the 2,000
kilometer range, beam-bending as a result of atmospheric distortions (the intended
location of the laser scan should have illuminated the target, but bending of the beam
resulted in no intersection with the target); or due to signal losses (i.e., high sensor
sensitivity threshold; refer to Section 3.3.2.1) within the receiving equipment. In this |
case, a leas of speckle information would also result. Secondly, in Equation (3.51), it
was shown that the relative velocity is a function of y, such that ne Daoppler shift
occurs if the target's velocity is normal to the transmitter‘s LOS. Hence, as shown
in Figure 3.13, as y approaches 0°, both the broadened plume-induced Doppler
spectrum and hardbody-induced spectrum will converge and overlap, The two spectra
will become more indistinguishabie, perhaps rendering detection of the hardbedy's
Dopplor return impossible. In this second case, there would not be a simultaneous
loss of speckle information.

The simulation of the probability-of-miss is similar to the technique employed
by the plume reflectance medel, A randoms number generator, with a Iunifamiy
distributed output, also provides the logic to turn the bardbady laser backscattor “"on
and off.” Figure 3.14 shows the detection characteristic for a known signal. The
graph presents & set of parametric curves that give the probability-of-detection, Py,
values as a function of paak sigwa;to-noise ratio (SNR) for various values of

3-BF




193233d W %7 uopdegap 30 Ag1Igoqosy
- 404 044 [ » “ [ 'Jv foed L d —Qw ‘— L [ _ o L4 ﬁ.- hdd 3 s o wi »

.. F IR m“l...w..i; ~.i 1l r i w_. i _ I HyliiiE

-l 141 LJ —=] o L % & —‘.u” I P

= E L1168 o g 128 { i F it -

: 3! | |W.U1ﬂx.: \ ..r.Ll"..L?L ] _ Iti= ] b o o 5 31— @

: i R b L e 2

: S i == i =,

- - IS - "~ .rr 3= HH '~ w3

A _ U uy 2o ’ . I i e~ o

o " = gihi I AL 1hid H 1 I._ T { =

=i 43 — = . HY n&ﬂ.x Lia i ..uﬂ... 24 a4 .m

= L e T e 1 H i TR S 3

z S (TSR TS : R TR £ 2

= B _“ “ Z Lm.fﬂfﬂ ..,., pritll 1%”,;.1 i ﬁ...J.u#;kQ%ﬁ iHESES amw m

= LY T =EE T ™ 4 WiE = -

3k 34 JN | ==t i ,LL? IRES- O i - &) -
= : - w_ ..Lj | j ..er B B = Ml.u. = D
- ) I HRE -

=+ B gl J? 1T R O e b1 g ©
=11 =il w =11 TR, _ i 3..; : = E 3 m

. pt 08 8 84 g 28 5 b3 4 4 - SN S B e — =

JF =1 = ] 1138 1 11 NLH:T 1= HH + - L

=k ] ,T_ “EN fl il st g |5 A ESER S HIESES £ a
=EH T LR S e RS e iifE52E s =

=Ef TR BERR I HTI ittt i -1 :

£ i1l BBaIN LD BES) il |11 e = -

= A= R ni il i £ 5

=3 ~ — H H —Jr- o

Gk ! 2L 4 f 3

o o o o f e S Py B L& e3¢ [) ~ t 3=

=1 T = A ) I meaphm

i S HH=EE T Y2 il I,

BRI BEE ZENE : i, Rl E

=TI BEE e C TR T i, o

=} -t-§=1 zf ] i _r:— B by

. ! 0 o - . - - . -




probability-of-false alarm, P;,. P, is defined as falsely indicating the presence of a
return signal when none exists [38]. Both P; and P,, are specified by the system
requirements; the radar designer computes the probability-of-false alarm and, from
Figure 3.14, determines the minimum detectable signal. A range of 70 - 99 percent
probability-of-detection is representstive of current Doppler detection equipment

capabilities with the tracking scenario [9].

3.4 Truth Model Parameters

The discussions in the previous sections introduced some of the truth model
paran: .ers used in the simulation. The purpose of this section is to provice a

consolidated listing of the parameters and initial conditions of the truth model.

3.4.1 Target Trajectory In tial Conditions. The initial conditions of the target

inertial position, velocity, and velocity vector erientation angle, 0, are as follows:

e, = 27,000 meters

e, = 100,000 meters
e, = 2,000,000 meters

=3
L4}

, = -2,600 meters/second
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v, = 4,330 meters/second
v, = 0 meters/second

0 = 60°

These initial conditions represent data from the Atlas ICBM; the physical meaning
is tied to the reference frame description of Section 2.4.1.1 where e, is along the LOS
vector (thus the 2,000 kilometer distance). The angle, 0, is the true angle that is

programmed as a constant in the software.

3.4.2 Target Model, Dimensions, and Oriertation. The target plume consists
of a crescent-shayped intensity function formed from the difference of two bivariate
Gaussian intensity functions. Each Gaussian function is modeled with elliptical
constant-intensity loci with an aspect ratio of 1.5, and a semi-minor axis of one. For
this thesis, Evans' 3-dimensional reflectivity model is used to model the hardbody.
The hardbody length is 40 meters (1.33 pixels) and 3 meters (0.1 pizels) wide. The
offcet distance of the hardbody center-of-mass from the intensity centroid (actually
measured to the pogo equilibrium zere velue) is 87.5 meters (2.92 pixels), a carryover
frora the previous thesis. For the simulation, the intensity centroid and the hardbody
longitudingl axis ave aligned with velocity vactor, and the hardbody has zero sideslip
and zero angle-of-attock.
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3.4.3 Intensity Functions. The two Gaussian bivariate intensity functions,
shown in Figure 3.3, are centered at 656 and 110 meters behind the missile. Each

intensity function has a maximum intensity value of 20 intensity units.

3.4.4 Atmospheric Jitter. The variance and mean squared value for the

atmospheric jitter in both FLIR directions are 0.2 pixels®.

3.4.6 Bending/Vibration. From Equation (3.29), the values for the second-

order bending/vibration model are as follows:

k' = Bx10W
Cb = 0.15
@, = © radians/seconds

3.4.6 Plume Pogo Characteristics. The size of the plume is on the order of 30
times the diameter of the missile at the altitudes of interest. The values helow
vepresent values of pogo oscillation as determined in previous research [34].

pogo oscillation = 0.1 - 10 Hz (nominal is 1 Hz)

PORO YIS = 0.0112 - 112 pixels (nominal is 0.112 pixels, which

is equal to 3.36 meters at the {arget; one pixel at 16
pradians per side st the range of 2,000 kilometers
equals 30 meoters)
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3.4.7 Spatially Correlated Background Noise. The rms value of v,, the
summed effect of the spatially correlated background noise b;, and the FLIR sensor

noise n;, of Equation (3.45), equals one, This produces a SNR of 20.

3.4.8 Low-Energy Laser Speckle Return Measurement Dimensions. The low-
energy scan is represented as a rectangle at the hardbody target. The scan length
is 262.5 meters (8.75 pixels), which is three times the true model center-of-mass offset
distance, and the scan width is 0.1 meters. The measurement noise associated with
the speckle return is obtained by taking 1% of the hardbody's length, and converting

to pixels, giving a variance of 0.000178 pixels® [4].

3.4.9 Plume Reflectance Model. The bias utilized by the plume reflectance
model is approximately 26 - 30 meters and appears 90 - 95% of the time while the
plume is illuminated during the boost phase [1]. For the sivaulation, nominal values
for the bias and rate of appearance are set at 26 meters and 90%, respectively.

3.4.10 Low-Energy Doppler Return Measurement Dimensions. The Doppler
measurement noise rms tracking errors are functions of wavelength, radar aperture,
and SNR. The previous thesis studied filter parformance dependsnt upon the
wavelength values of 0.63 pm, 1.06 pm, 2,01 pm, 4.00 pm, 6.00 pm, 8.00 pm, and
10.50 pm, with SNR values of 10, 8, 6, and 4, and probability-of-miss P, values of
0.00, 0.01, 0.02, 0.03, 0.04, 0.05, 0.10, 0.20, and 0.30. Since the purpose of this thesis

3-61




was to incorporate pogo into the filter, the filter was given the benefit of the best
possible Doppler measurements throughout the simulation. Therefore the conditions

were set for a wavelength of 0.53 um, a SNR of 10 and a P,, value of 0.01. The radar

aperture d of Equation (3.69) of 0.5 meters was carried over from the previous thesis.

3.4.11 Hardbody Reflectivity Measurement Model. The function u(’), in
Equation (3.50), represents the sensitivity threshold of the low-energy laser return
sensor. The magnitude of reflection must be greater than the threshold, m,, in order
to detect the return from the hardbody. In the simulation, the value of the threshold
is set to 0.00. This was to allow reception of measurements if any backscatter was

veceived at all (perfect LEL receiving equipment).




3.5 Summary

This chapter presented the mathematical description of the truth model. The
truth model consists of 14 states: 2 deterministic target trajectory states, 6 stochastic
atmospheric jitter states, 4 stochastic bending/vibration states, and 2 stochastic
plume pogo states. The infrared target plume model is formed from the difference
of 2 bivariate Gaussian functions. The FLIR measurements are corrupted by
spatially and temporally uncorrelated FLIR sensor noise, and spatially correlated and
temporally uncorrelated background noise. The low-energy laser measurement
models, which provide an offset measurement from the intensity centroid to the
hardbedy centexr-of-mass, consist of the plume reflectance model, the 3-dimensional
hardbody reflectivity model, and the Doppler measurement model. The plume
reflectance model simulates the elongaticn of the apparent hardbody in the speckle
measurement data due to the simultaneous hardbody and plume speckle return. The
3-dimensional hardbody reflectivity model provides realistic backscatter that is a
function of the hardbody's curvature and aspect angle. The Doppler measurement
model also utilizes the backscatter information from the 3-dimensional reflectivity
model and corrupts that information with noise having rins angle tracking errors
associated with a particular wavelength, radar aperture, and SNR.
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y IV. Filter Models
4.1 Introduction

This chapter describes the linear Kalman filter (KF) dynamics and
measurement models that make up the basic structure for one of the elemental filters
of the Multiple Model Adaptive Estimaator shown in Figure 1.3, This elemental KF
model has changed many times over the course of this research strain to be finally
consolidated in Ching's [1] thesis. These KF structures are reduced-order, simplified
versions of the truth model. Section 4.2 will describe the defining equations of the
elemental filter dynamics model. Section 4.3 details the filter measurement model

structure.

4.2 Dynamics Models

The elemental AFIT filter used in this work is a single ninestate filter
combining models that have been developed by past AFIT students from this research
line(1,3,8,9,26,28,34,36]. The filter consists of two hardbody centor-of-mass position
states (note that these two states are different from the first two states of the truth
model, which are position of plume intensity centroid), two hardbody center-of-mass
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velocity states, two atmospheric jitter position states (affecting the plume centroid in

the FLIR plane), two pogo oscillation states (affecting centroid location relative to

hardbody center-of-mass), and a plume intensity centroid/hardbody center-of-mass

offset state. The state vector for this elemental filter is:

Y

]

i

O =[X% vV % Y% ,%, ¥ (4.1)

x component{ of target (center-of-mass of hardbody) position
(azimuth) relative to center of the FOV

y component of target (center-of-mass of hardbody) position
(elevation) relative to center of FOV

x component of target (center-of-mass of hardbody) velocity

y component of target (center-of-mass of hardbody) velocity

x component of atmospheric jitter

y component of atmospheric jitter

plume pogo offset distance (along velocity vector) of plume
centroid from the equilibrium point

velocity of the pogo oscillation (along velocity vector)

offset distance between the plurae centroid equilibrium point and
the hardbody center-of-mass

Each state in Equation (4.1) is coordinatized in the o-f (FLIR) plane. A

comparison between the filter model and truth model show that some state reduction
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has occurred. Only two atmospheric states are represented in the filter, compared
with six in the truth model. The high frequency poles have been eliminated (four
states, two for each double pole in each coordinate direction) due to their negligible
impact [82]. The bending/vibration states have also been eliminated for this reason
[12]. The pogo states in the filter are identical to the pogo states in the truth model.
The total offset distance from the filter-predicted plume centroid to the filter
predicted hardbody center-of-mass is composed of a linear combination of filter states,

including x,, y,, %,, and x,.

The filter model is described by the following time-invariant, linear stochastic
differential equation [21]:
%1 = Fx®) + Gw) 4.2)

where:

F = Time-invariant system (plant) matrix

2(t) = 9.dimensional filter state vector
G = 9 x 6 time-invarignt noise distribution matriz
wt) = 6-dimensional, white Gaussian noise process with independent

components, and mean and covariance kernel statistics:
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Ew@) =0
Ew@®wt + ©)T} = Q ()

(4.3)

The filter staie estimate and error covariance matrix are propagated forward
to the next measurement update using the following discrete-time filter propagation

equations [16]:
#(ti) = BANRE) (4.4)

PGty = BANRE)DTAY) + Q, (4.6)

Filter estimate of the 9-dimensional state vector

H]

I

9 x 9 time-invariant state transition matrix for propagation over

the sample period: At = ¢;,, - t;

):

9 x 9 filter covariance matrix

i

Time instant before FLIR measurement is incorporated into the
estimate at time ¢,

i

Time instant after FLIR measurement is incorporated into the
estimate at time ¢, |
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Q, = 9 x 9 flter dynamics discrete noise covariance given by:

’M

Q= [o¢, - N6 QGT O, - W (4.8

4

The block diagonal components of Equations {4.2), (4.4), and (4.5) associated with

each state are described in the next four sectiors, |

4.2.1 Terget Dynamics Model. The elemental filter uses four states to describe
the target dynamics. The velocity states are represented as random constants plus
noise with the time-invariant continuous-time dynamics system (plant) matrix, F,,

given by:

(0010
0001
. (4.7)
F 0000

10000]

The noise distribution matrix, G, is:

0 0
00

Fed - {4~8)
G, 10 '

o

The strength of the white Gaussian noise w,,is given by @,, is:

46




Q =

0 Q

4.9)

where @, and @, are the noise strength values in the x and y directions. The time-

invariant target dynamics stute transition matrix, ©,(As), is given by:

At 0
0 At
1 0
0 1

{4y =

@ -
S © = o

1 0

(4.1}

The solution to Equation (4.6) using Equations (4.8), (4.9), and (4.10) yields the filter

dynamics discrete noise covariance, &, given by:

%me“‘ 0 %Q,‘At2 0
1 1
0 3088 0 -QArf

2087 0 QA 0
t

0 -0aF 0 Qu

(4.11)

4.2.2 Atmospheric Disturbance Model. 'The atmospherie jitter model describes

the motion of the plum~ image iu the FLIR plane due to atmisspheric disturbances

(vefraction variations from moisture, thermal variations, ete.). Thasix-state filter hae
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been reduced to two states, one in each the x and y direction. The time-invariant

system matrix, F,, of the continuous-time dynamics medel of Equation (4.2) is:

"o, 0 (4.12)
¢ -,

0w, = Atmospheric jitter break frequency, 14.14 rad/sec
The noise distribution matrix, G, is:

10
G, [01] )

The strength of the white Gaussian neise, &, is:

Q=] ° (4.14)

0, =  Variance and mean-sguared valve for the atmospheric jitter
| process

[, = Correlation time constant for atmospheric jitter process (z, = Vo)
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The time-invariant target dynamics state transition matrix, ¢ (A?), is given by:

exp(~-w, Af) Q
0 exp(-w, Af)

@ (Af) = (4.15)

The part of the solution to Equation (4.6) due to atmospheric jitter, using Equations

(4.13), (4.14), and (4.15) yield the filter dynamics noise covariance, @, is:

0
Qu - lqw ] (4.16)
0 94
where:
Q11 = Qdaz2 = 02[ 1 -exp (’2(—?2]] 4.17)

4.2.3 Pogo Dynamics Model. The implemented filter plume pogo model is
identical to the truth model described in Section 3.2.4. ‘The time-invariant system

matrix, F, is given by:

7o 1
F, = ) (4.18)
"Qpr 2 py
where:
Op = Undamped natural pogo frequency (0.1 - 10 Hz)
Gy = Filter damping coefficient chosen to be 0.05 [34]
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The noise distribution matrix, &, is:

K° :J 4.19)
of (6]

G, =

and the white Gaussian noise, w, is of unit strength:

Q=1 (4.20)

The time-invariant target dynamics state transition matrix, ®,(Ai), is given by:

®,,(80 ®,,(A0
(A (A0

@A) = (4.21)

with the individual elements of the ®,(A}) given in Equation /3.43). The filter
dynamics noise covariance matrix, @,, is not included here due to its length and

complexity. The complete matrix description is found in the AFIT software [25].

4.2.4 Centroid Equilibrium Poini/Center-of-Mass Offset Model. In previous
theses [8,9,14], the measurement determined from the LEL (by either speckle return
or Doppler spectra of the plume and hardbody) was processed in an independent
center-of-mass offset filter. The estimate from that filter was then added to a FLIR
filter estimate of the position of the centroid in order to obtain center-wf-mass
position. Since pogo was not included in the filter models, the offset between the
center-of-mass and the intensity centrnid was modeled as a constant. For this thesis,

the same dynamics model is used, but the offset state is augmented to the previous
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models to form a single nine-state elemental filter. The centroid offset state, modeled
as a constant bias, describes the distance between the center-of-mass of the missile
hardbody and the equilibrium point about which the plume pogos. Equations (4.2),
(4.4), and (4.5) are still applicable but are expressed in scalar form since there is only
a single state. The bias is modeled as the output of a simple integrator, with driving

pseudo-noise for filter tuning purposes.

The elementis of the linear, time-invariant stochastic differential equation are:
F, = 0
G = Time-invariant noise distribution matrix, equal to unity
w = White Gaussian noise process, independent of the noises driving
the target dynamics and atmospheric jitter models, with mean

and covariance kernel statistics:

Ef{w() = 0
Eww(t+)l=0Q, 3

(4.22)

and @, = 1.
The elements of the equivalent discrete-time filter propagation Equations (4.4)
and (4.5) are given by:
O A) = Time-invariant state transition matrix, equal to unity

Q. =Y Filter dynamics noise variance equal to @ At
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4.3 Mecsurement Models

This section discusses the two different measurement modelst’  reused in
this simulation. . The thesis students in this research strain only had one
measurement source, the FLIR, until Eden [8], who added the second source, a low-
energy laser. The FLIR measurement model is detailed in the first cubsection, where
it is explained how the raw data is processed through the enhanced correlation
algorithm. This raw data, compared with data templates, form the "pseudo-
measuremenis” for the linear Kalman filter. The linear and non-linear update
functions used for the Kalmsan filters are also presented. The last subsection

describes the measurement model used for the low-energy laser measurements.

4.3.1 FLIR Measurement Model. Measurements of the plume intensity
centroid's position are generated by an enhanced correlator algorithm, shown in
Figure 4.1, developed by Rogers [22,35]. This enhanced correlator algorithm
compares the incoming FLIR data frame to a template that represeuts an estimate
of the target plume's intensity function. Previous correlators compared the current
| data frame with the previous data frame. The “pseudo-measurements” of the
centroid's position offsets produced by the enhanced coxrelater are a nonharsh
nonlinear function of the states being estimated, and thus a nearly linear Kalman
filter is used [9).
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Figure 4.1 Linear Kalman Filter/Enhanced Correlator Algorithm

4.3.1.1 Enharced Correlator Algorithm. The algorithm presented here was
developed ss an alternative to an earlier 64-dimensional, nonlinear measurement
model. Previously, an extended Kalman filter processed raw FLIR measurement data
from a standard FLIR sensor, with no correlation algorithm utilized {26). With the
enhanced correlator algorithm, a nearly linear Kalman filter is employed since the
output messgurements from the corvelation algorithm are 2-dimensional position
“measurements” that are nonhars_h nonlinear functions of the states to be estimated.

As will be geen later in the section, the nonlinearity is a sinusoidal function caused

4-12




by the introduction of the plume pogo effect into the model. The sinusoidal function
is a mild nonlinearity in comparison to the extended Kalman filter measurement
model required to process raw FLIR data. This enhanced correlator/linear Kalman
filter configuration performs as well as the extended Kalman filter with respect to
rms tracking errors and further provided a reduction in computational loading [1].

The "enhancement” occurs in the following manner [38]:

1. The most current FLIR data is correlated with a template (which is an
sstimate of the target's intensity function), instead of with the previous FLIR data

frame,

2. Instead of outputting the location of the peak of the correlation function, a
technique known as “thresholding” is used along with a simple center-of-mass
computation. The enhanced correlator outputs the center-of-mass of the portion of
the correlation function that is greater than some predetermined lower bound.
Consequently, the enhanced correlator has no difficulty distinguishing global peaks
from local peaks, as do many conventional "peak-finding"” correlation algorithms,

3. The FLIR/laser pointing commands are generated via the one-sample-

period-ahead predictions from the Kalman filter propagation cycle instead of by the
“raw measurement’ output of a standard corvelation algerithm.
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4, The Kalman filter estimate, £(t,"), is used to center the template, so that the
offsets seen in the enhanced correlator algorithm should be smaller than those visible

in the conventional correlator. This increases the amount of "overlap” between the

actual FLIR data and the stored template, and thus improves performance.

Referring back to Figure 4.1, the enhanced correlation algorithm uses the 8x8
array of target intensities obtained by the FLIR measurement, to establish a 64-
element shape function from the target plume intensity profile. The current FLIR
data is correlated against the template of the previously stored shape function that
has been centered on the FLIR image plane. The outputs of the algorithm are two
linear offsets, x, and y, in Equations (3.1) and (3.2), that yield the highest correlation
of the current data with the template. These "pseudo-measurements” are then fed
to the linear Kalman filter for its update cycle. The filter provides the updated
estimate, &(¢;"), used to center the FLIR intensity profile to be included in the

template generation for the next measurement.

For forming the next template, the current intensity function image is centered -
on the FLIR plane by translational shifts using centroid offset estimates from 2(2*),
using the "shifting propexty” of the Fourier Transform, where negating phase Biufts
are applied in the spatial frequency demain to accomplish a translational shift in the
original domain, Rather than perform the difficult correlation in the time domain,

the Fourier domain allows one to apply multiplication to implement the “translational

4-14




shift" of the intensity functions and eventual correlation with the template.
Exponential smoothing is then used to average the result with previously centered
images to yield an updated template.

4.3.1.2 Template Generation. The template reconstructs the shape, size, and
location of the intensity centroid using the raw noise-corrupted FLIR measurements.
The template generation begins with an input of a FLIR frame of data to the
enhanced correlator algorithm of Figure 4.1. Using the "shifting” property of the fast
Fourier transform (FFT), which states that a translational shift in the spatial domain

is equivalent to a linear phase shift in the frequency domain, the required phase shift

is computed by:
F{gk - %00 - yug ) } = G dexp -12x(Fxy0 + fyoap) (4.23)
where:
{} = Fourier transform operator
g5 =  2<imensional epatial data arcay
GE.L) = Fgky) |

£.£, = Spatial frequencies

The Fourier transform is implemented in the simulation software using the
Cooley-Tukey algorithm [35]. ‘The target piume intensity shape function is “centered
on the FLIR plane” by phase shifting the transformed function an amount equal to:
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Tag® = 2 + 26D + @ED4,6)) cosh, (4.24)

Yid®) = 36 + 580 - (B0)4,)) sind,

_.;-' , "’ where Gf is the filter's estimate of the velocity vector angle in the FLIR plane (recall
- Figure 3.7), such that:
A o
O(Sef - X
02+ 92
= 9 y (4.24a)
Sinéf = - Y
2 2
; VY

A A

where X, 3, Uy, U,s %, ¥, and Z, are the state estimates defined in Equation (4.1),
Once the date is centered on the FLIR plane, it is incorporated inte an updated
template for the next sample period, In the simulation, the Kalman filter's first
update cycle is bypassed to form the initial template.

. _ The template is generated by averaging the N moed vecent centered intensity
| functions observed by the FLIR sensor. The averaging ., ocess tends to accentuate :
the target intensity function and attenuate the corrupting background and FLIR
noises. The memory size NV is chosen according to how rapidly the shape functions
change, i.e., highly dynawic intensity functions require smali values of N, whilé
slowly varying functions use large N'values. Typically, a true finite memory averager
would require a large computer memory [17). However, the enhanced correlator '
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algorithm circumvents the memory storage issue by incorporating an "exponential
smoothing” technique to approximate the averaging. This technique has properties
similar to finite memory averaging, but with the advantage of requiring only the
storage of a single FLIR frame of data. The template is maintained by the

exponential smoothing algorithm given by:

Iy = vI@) + (1 - )G, (4.25)
where:
I¢) =  "Smoothed estimate" (template) of the target's intensity function
I(t) = "Raw" intensity function from the current FLIR data frame
Y = Smoothing constant: 0 < y<1

The smeotiing constant, y, is comparable to the value seiected for N. From Equation
(4.26), it can be seen that large values of y emphasize the current data frame and
cémaspond to smsll values of N. Bases on previous studies [14,40}, a smoothing
. constant of y = 0.1 isusedforﬂlisthesis.

Areinitialization slgorithm is used after the first ten sample periods (although
it could be called periodically in sctual implementatics). Once the templote is
 computed, its centroid is calculated and shifted to the center of the field-of-view for
the ten:plate, thus eliminating any initial pointing biases, 1t is this template which

- 417




is now stored and correlated with the next FLIR data to produce the "pseudo-

measurements” [{43].

4.3.1.8 "Pseudo-Measurements.” The template serves as the best estimate of
the shape of the target plume intensity function prior to receiving a new FLIR data
frame. The cross-correlation of the incoming FLIR data with the template provides
the position offsets from the center of the FOV to the centroid of the target intensity
image. The cross-correlation is computed by taking the inverse fast Fourier
transform (IFFT) of the equation [36]):

F{ gy * ixy)t = G GHL (S (4.26)
where:
) = Fourier transform operator
&xy) =  Meosured target intensity function of the current FLIR

data frame

Ux,y) = Expected target plume intensity function (i.e., template)

gxy)* sy) =  Crosscorrelation of g(x,y) and Ux,y)
6L =  Fgtw
L) = Complex conjugate of Flix,y)

After the IFFT is accomplished, the values of the correlation function, glx,y) * I(x,y),
ere modified such that any value less than 30% of the function's maximum value is
set to zerv [14,31]. This "thresholding” technique is vsed to eliminate false peaks in
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the correlation function that occur due to noise and other effects. As shown earlier
in Figure 4.1, the output of the image correlation is the offset of the "thresholded"
FLIR intensity centroid from the center of the FLIR FOV. This offset is assumed to
be the result of the summed effects of target dynamics, atmospheric jitter, the pogo

effect, and measurement noise.

For the I'LIR measurement update, the x- and y- components of the offsets are
the pseudo-measurements provided to the Kalman filter. These offsets are expressed

as.

Koo = %y + Zg + (5, - xcosh, + v,
Yoo = Ve ¥ Vo = (% = X JsinG, + vy

4.27)

where;

vx
cosﬂi e

‘/vf + vy

ind), = .

‘/v; + v,,i

- (4.28)

and O, is the angle between the velocity vector and the x-axis of the FLIR plane
(vecall Figure 3.7). These two measurements can be represented in state space form

as:
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z(8) = Byl 3] + v(8) (4.29)

where:
2t) = [2g5ult), Yogult) 1 T; 2-dimensional vector measured in pixels
hix(t)t]l = Nonlinear measurement function vector given by Equation (4.27)
x{t) = 9 x 1 state vector from Equation (4.1)
vlt) = 2-dimensional, discrete-time, white Gaussian measurement noise
(in pixels) with statistics:
E{vt)}=0
(4.30)
R ¢ =¢
T) o (]
E{v(:‘)v(t}) }-{0 e,

Note that because of the pogo states and offset state, x, being defined along the
velaity vector and being included in the output equations, this messurement model
is nonlinear in the filtor states, and the extended Kalman filter update oycle
described in Chapter H (Equations (2.26) and (2.27) ) must be applied. These update

equations are:
Kt = Fy6)H] (PG, + RyY!

»5:,(:{) = £() + E{t‘)i () - &2}
B = B - EQHFE)

(4.31)

woare.
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Kit) = 0 x 2 filter gain matrix
Pgr) = 9 x 9 filter covariance matrix
hix(t)tl = 2-dimensional nonlinear measurement function; Equation (4.29)
H, = Linearized measurement matrix; Equaticn (2.26)
R, = 2 x 2 measurement noise covariance matrix; Equation (4.34)
x(t) =  9-dimensional estimated state vector; Equation (4.1)
2(t) =  2-dimensional measurement vector; Equation (4.29)
t) = Time instant just prior to measurements being incorporated at
time ¢
(¢’) =  Time instant just after measurements are incorporated at time ¢,

The linearized FLIR measurement matrix H, is given by:

H, = (4-32)
7101 Hy B, 01 Hy 0 Hy
where:
g o ol a6y - 3
13 axa é (4'338)
| LR ANPRS
H. - onixgl | x x5 - %) :
o Ta, (4.33b)

3
2 N3
[% + x‘zl -“ﬁl‘;,




P . . (4330
17 .
ax, [Jr,_,2 + .xf’] L -2
g, - H (4.33d)
19 .
axg [x32 ¥ xﬁ L-s,(:;)
o - oh,fx.t] _ Th X 8y - LA
23 &, . 3 (4.33¢)
[x3 * xﬁ = f}(tg-)
_Shixg) % - %) w530
24 &‘ , % .
[xg * xf] = .9_,(&-)
- oh[x,t] . (4.335)
27 3 .
ax, x5 + xf'j L« o)
g, - M A (4.33h)
29 5 = T F .
& 2
s x + x‘zl s = 241))

The measurement noise v{t;), represents the combined corrupting effecis of the
spatially correlated background noise, the FLIR sensor noise, and the errors due to
the FFT/IFFT processes. The covariance matrix, R, associated with this error is

given by [8,28,35]:
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R, = [0'00436 0 ] pixels? (4.34)

4.3.2 Doppler Measurement Model. The primary purpose of this research is
the precise tracking of the missile hardbody and determination of its center-of-mass
location in the presence of plume pogo. The basic premise underlying the dynamics
modeling efforts is that the center-of-mass is located at a constant offset distance
relative to an equilibrium point about which the intensity centroid oscillates due to
the pogo effect. The offset distance is oriented angularly using the filter-estimated
velocity in the FLIR image plane [3]. Figure 4.2 illustrates the geometry of
estimating the offset distance and the dependence of the scan and offset computation
upon the filter's estimates of the position and velocity of the inf wnsity centroid
immediately after the FLIR updace. Note that Figure 4.2 depicts the ideal situation;
in general, the filter estimates of the centroid position, velocity, and the orientation
angle are not equal to the truth model values. A low-energy laser is scanned along
the filters' estimate of the velocity vector, starting at the filters' centroid estimate.
The missile hardbody reflections determine the center-of-mass as the midpoint of the
line segment joining the two endpoints. The offset measurement delivered by the
scan is a function of the constant offset plus translation of the centroid from its

equilibrium point due to the pogo phenomenon.
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Figure 4.2 Filter Estimate of Offset Distance (Ideal Conditions)

Previous theses [3,4,9] utilized a two-filter approach in which the FLIR filter
and center-of-mass filter functioned autonomously; the "FLIR" filter had no
knowledge of the existence of the “center-of-mass" filter. Both Eden [3] and Evans
{4] utilized the low-enerpy-laser speckle return of the hardbody/plume interface to
generate measurements for the “center-of-mass” filter. Herrera [9] utilized the
Doppler spectra in the laser return to derive successfully a more accurate, unbiased,
offset measurement, but still maintained the same basic independent-filter structure.

Ching [1] combined the "FLIR" and "center-of-mass” filters into the current nine-state
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filter model. The Doppler measurement model used for this research was developed
in previous these [1,9], and the model description is largely taken from these research

reports.

The Doppler measurement model provides 2 measurement based upon the low-
energy laser Doppler return of the hardbody. The significant dissimilarities between
the plume and hardboo;-induced Doppler returns can be exploited to discern the
plume/hardbody interface (Section 3.3.3) precisely, and provide information regarding
the location of the hardbody. The low-energy laser measurement is provided to the
Kalman filter whenever the laser intercepts the hardbody, and the hardbody-induced
(and plume-uiduced) Doppler return is received by Doppler return sensor equipment.

The resulting measurement to be provided to the filter is a noise-corrupted
measurement of offset distance, which is a linear function of the filtet’s offset and

pogo estimates, The measurement is given by:
Fogser = % = X%y (4.35)

The discrete-time scalar measurement model is given by:

As) = H, x(t) + v{t) (4.36)
where:
&) = Measurement of the offset distance
H = 1 % 9 measurement matrix
xt) = 9 x 1 state vector of the filter
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v{t) =  Discrete-time, white Gaussian measurement noise with statistics:

E{w)}=0

t, =1
sy - {0

where R, = R, (true Doppler measurement variance), a function of low-energy laser
wavelength, radar aperture, and signal-to-noise ratio (Section 3.3.3). The

measurement matrix, H,, is defined in accordance with Equation (4.36) as:
H =[000000-101] (4.38)

Since the measurement is linear, the linear Kalman filter update cycle described in

Section 2.2.2 (Equations (2.22) - (2.24) ) is used.

In some instances, the low-energy laser sweep may be unsuccessful in
generating a measurement, due to missing the hardbody because of poor estimation
of the centroid location and velocity vector orientation, or due to poor conditions for
discerning the differences in Doppler frequency spectra between the hardbody and
plume. If a measurement is not generated by the LEL sweep, the LEL update is

bypassed.

4.3.3 Filter Parameters. This section provides a consolidated reference of the
parameters used for this simulation. Presented below are definitions of the modeling
parameters, initial conditions, and tuning parameters for the nine-state filter used

in this research.
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4.3.8.1 Initial Conditions. The filtcr initial state estimate, %, is artificially
initialized to zero error for the position, velocity, and pogo states of Equation (4.1).
The position states, x, and x,, are initialized to the true center-of-mass with the
target intensity centroid centered in the FLIR FOV. The velocity states, x; and x,,
are initialized in accordance with the target's initial trajectory conditions as defined
in Section 3.4.1. Both atmospheric states, x; and x,, are initialized to zero. The offset
of the plume from its equilibrium point (pogo position) and the velocity of this
oscillation (plume pogo velocity) are initialized to zero since both are naturally zero-
mean processes. The constant distance between the equilibrium point and the center-

of-mass are also initialized to true conditions (87.56 meters, or 2.92 pixels).

The initial state covariance matrix, P(ty), is:

(100 0 0 60 0 0 0]
0100 06 0 000 0 0
0 020 0 000 0 0
0 0 0 20000 0 0 0
Pt)={00 0 0 200 00 (4.39)
00 0 0 020 0 0
00 0 0 0050 00
00 0 0 00 0 2500
(00 0 0 000 0 .2,

where the units of the covariance associated with the hardbody center-of-mass
position states, x, and x,, the atmospheric states, x; and x;, the pogo position state,x,,

and the offset state, x,, are pixels?®, and those of the center-of-mass velocity states, x;
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and x,,and the pogo velocity state, x,, are expressed in pixels¥second® [4]. The new
values in equation (4.39), 500 and 250, gave the best results during the simulation

data runs.

4.3.3.2 Tuning Values. The measurement covariance mairix for the . LIR,
R, was established empirically in past research [22,35). Ry, (with units of pixels?)

is given by:

0.00363 ¢
} (4.40)

R =
rut { 0 0.00598

The measurement variance for the Doppler measurement, Ry, is equal to the true
measurement variance and is a function of the low-energy laser wavclength, SNR,
and aperture diameter of the transmitter. The filter measurement variance is carried

over from Herrera's research and is given by [9]:

Rpgpie = R, = ak}{m T (441)
where:
Bp,ue =  Tilter measurement noise variance
R = True measurement noise variance
0 = Beam diffraction limit
k, = Pixel proportionality constant; 16 urads/pixel
SNR = Signal-to-noise ratio; 10
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Both atmospheric variances, o,,” and ,,%, are equal to 0.2 pixels®, in accordance
with the truth model (Section 3.2.2) [4]. The process noise strength for the pogo state
is dependent upon the desired rms amplitude of the pogo oscillation, opz, [34]. The
filter pogo gain constant, K , is initially set equal to the truth pogo gain constant, K,
( Section 3.2.4, Equation (3.38) ) and then adjusted if necessary while leaving the
truth noise strength constant. Nominal rms pogo amplitude for this research was
carried over from Rizzo's research and set to op2 = 0.112 pixels® at a frequency of @,
=1 Hz. The offset state dynamics noise variance, @,, from Section 4.2.4, is equal to
0.9 pixels®, based upon Evans' research [4]. The probability of miss for the Doppler

measurement model was set at 0.01 (Section 3.3.3.4)
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4.4 Summary

A nine-state extended Kalman filter is used in this research to investigate its
performance in tracking the hardbody cen’er-of-mass from a large distance, in the
presence of vehicle dynamics, atmospheric jitter, and plume pogoing effects. This
chapter has described this extended Kalman filter's linear internal dynamics model
dealing with the propagation of the state estimate, £. The two different measurement
models, FLIR and low-energy laser Doppler model, were discussed in the context of
their role in the update process. These two distinct updates are accomplished in a
method in which the FLIR 2 x 1 update is processed and then the scalar laser update
is performed if there is a laser "hit" on the hardbody center-of-mass. The last section
provided a summary of the initial conditions used for this extended Xalmun filter
algorithm,
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V. Elemental Filter and MMAE Results/Analysis
5.1 Introduction.

The software simulation of the real world, measurement generation, enhanced
correlator algorithm and various Kalman filters have been developed at AFIT over
the last 15 years [31]. This thesis is the continuation of the overall research effort
into this missile tracking greblem. The linear Kalman filter used in conjunction with
an enharsed correlator algorithm provides a viable tracking algorithm that is used
in different configuraiions that further our knowledge in this MMAE tracking area.

Figure 5.1 shows the block diagram used to explore ﬁxe parameter space of -
amplitude and frequency of oscillation of the plume pogo phenoxﬁenon.~ Section 5.2
details the single-filter implementation and performance anaiysis of this block
diagram, with the follow-on thought precesses used for MMAE conﬁgurat.mn choices.
The insight gained from the analysis of Section 5.2 ié usad to form several MMAE ‘
configurations. Results and performance analysis of the computer runs from these '

various configurations is accomplished in Section §.9.




Template - ------ - ,
Generation' | ‘ﬁtﬁ -
' N Updated State Estimate

8x8 xoonentia | ]

Input Smoothing _.l Template

Array sl L

| image |4 ——— S hRAD] [ oreseme

Corelation . , I P

(IFFT) Stvage
2ZE) L) bkt rorume
Results of [Y"Yd (t.;)|____ Conualer
Propagation t——- -]

Pigure 6.1 Single Kalman Filter Block Diagram Implementation

6.2 Elemental Kelman Filter Simulation Results/Aralysis

6.2.1 introduction. The pwpose in accomplishing the single-filter data runs
is to ensure that 2 working Kalman filter (KF') model is being used for the foundation
of the elemental filters that make up the MMAR structure. This working wmodel
should be tested at all of the parameter conditions to ensure that divergence of the

ter 18 not seen. Analysis of these computer runs will help in evaluating data

performance and will give insight into the choice of the various MMAE
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configurations. Comparison of the single filter residuals will also help in the

prediction of success or failure of the different MMAE configurations.

Table 6.1 introduces the parameter values for the different elemental filter
data simulations and the Appendix locations for the output plots. All of these data

runs are made up of 5 Moate Carlo (MC) simulations. These plots show the

l Truth Condition: Filter Condition Appendix Location
(Amplitude/Frequency) (Amplitude/Frequency) for Qutput Plots
0112/2r | 0.1122n | G1-C9
| 0.11?./201: | B C10-Ca2 )
1.12/2n  C13-C15
1.12/20n 7 » C.lﬁr-_ C.ls
0.412/20n onzoos | D1 - DY
N 0.112/2& D10 - DI2
L.12/%0n 7 D13 - D16
o 112/2n 1 vas.oas
1190, 1192 El-BY
112820 E10- E12
0112020 E18 - E16
, 0.112/20r 7 E16-E18 -“
112207 12220n Fi1-F9 j
REN F16-F12
011220k F13-F.1b6
| aaiem F.16 - F18

Table 5.1 Single Kalman Filter Truth and Filter Paraneter Valuss
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error in each filter state plotted in pixels versus time (60 samples per second).
Statistics from the MC runs, mean error and standard deviation of the mean error,
are compiled at times ¢; and ¢,*, just prior to and just after the update measurement
at each sample period. The chosen pogo amplitude values of 0.112 and 1.12 pixels
in Table 6.1 (approximately 3 and 30 meters at the range of 2,000 kilometers) make
physical sense, as do the pogo frequencies of 2n and 20n (1 and 10 Hertz). These
tabular results are contained throughout this chapter.

5.2.2 Single-Filter Data Runs. Thesingle-KF data simulations were performed
with the fact that a KF that is artificially informed of the correct truth condition will
provide the best results of any possible scenavio. The parameter space defined in
Figure 5.2 is used to describe the combinations of data runs. The point in Figure 5.2
that is not shown in Table 6.1, 0.112/11x, was added after insight was gained from
performance of the single-filter data runs., Several 5.-run Monis Carlo (MC)

‘simulations are made for the b single-filter configerations defined in Table 6.1. On .
the first set of MC runs, the XI' is artificially informed of the corvecs truth condition
for the purpose of developing a "best scenariv’ baseline set of data. The MC
simulations in which the filter has the "ticorrect” parameter values arve performed
for three veasons. Firet, it is necessary to have non-divergent elemental filters
running in this MMAE scheme. There is no built-in adaptation process for a
divergent filter. The second reasen = for parameter identification purposes. The
filters that show the best residuals should be those that are programmed with the
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Figure 6.2 Graphical View of Parameter Space

parameter values that best maten the real world conditions that the filter is tracking,
Comparison of the output residuals from these single runs will be used to choose the
MMAE configuration with the best chance of parameter identification suceess. The
third rveason is to have a "best case” set of filter performance data which can be
compared later to the differant MMAE configurations. |

The tuning of these Kalman filters is a eritical issue, as there is a balance that

must be met over the range of these potential elemental filters. On the one hand, the
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low dynaric filters (low amplitude and low frequency pogo parameter values) cannot
be tuned so tightly as to cause divergence when used against a higher dynamic truth
model. Also, the high dynamic filters cannot be so conservatively tuned as to cause
the low-pogo-dynamics filters to attribute errors wrongly from one state to another,
thus giving false outputs. To be as effective as possible, tight tuning should be used
on all of the states for all of the filters.

The next five sections, which provide an indepth analysis of the plots of
Appendices C through F, show that the five chosen elemental filters work well. They
behave as they should, given the input filter parameter values, and indeed provide
a working elemental filter model for use in a Multiple Model Adaptive Estimator.

5.2.2.1 Truth Parameter Values: Low Amplivude, Low Frequency. This section
describes the cases in which the truth pavameter values are set to an amplitude of
0.112 pixels and a frequency of 2r radians per second, with various filter parameter
settings. The filter parameter values are 0.112/2x (filtor is "artificially” informed of
the correct truth condition), 0.112/20x, 1.12/2x, 1.12/20%, and 0.112/11%.

The first set of Monte Carlo (MC) data runs has the truth parameter values

equaling the filter parameter values, set to 0.112/2r, corresponding to the lower left

point of Figure 6.2. The output ervor statistics are detailed in Table 5.2. These error
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State Mean Error (¢;) | Mean Error (¢,") STD. DEV. ;_-?m DEV. ;r
a(t;) oft;’)
X Position™ 0.060 0.061 0.427 0.401
Y Position* 0.072 0.074 0.341 0.313
X Velocity 0.010 0.006 2,791 2.789
Y Velocity 0.058 0.048 2.593 2.586
X Jitter 0.024 0.026 0.428 0.399
Y Jitter 0.023 0.020 0.473 0.458
Pogo Position# 0.004 0.004 1.756 0.176
Pogo Velocity# 0.032 0.031 1.100 1.100
Offset Distance# 0.119 0.120 0.514 0.515
X Centroid 0.004 0.003 0.458 0.444
Y Centroid 0.173 0.176 0.576 . 0.565

Table 5.2 Time-Averaged Error Statistics for Elemental Filter
{Truth = 0112725, Filter = 0.112/2r)

*X and Y Hardbody Center-of-Mass Position
#Measured in the Direction of the Velocity Vector

statistics are compiled as steady-state statistics from ¢ = 2 t0 6.6 seconds (60 samples
per second). The residuals from this data run are plotted as three separate
measurements (2 FLIR measurements, one each in the x- and y- directions, and one

low-energy laser measurement).

The filter ervor plots of Appendix C, Plots C.1 through C.8, show that there is
no divergence in any of the states. Plot C.1a (Hardbody center-af-niass position state)
shows that the filter- predicted plus/minus one standard deviation is very close to the

actual plus/minus one standard deviation. The filter-versus-actual error plot is close
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to being zero-mean. The more Monte Carlo (MC) runs that are made the "flatter” this
plot would be. The error in filter state 2 (y- position of the hardbody center-of-mass),
plot C.1b, is similar to C.1a in that the filter-versus-actual error is zero-mean and the
filter-predicted plus/minus one sigma is close to the filter-versus-actual plus/minus
one sigma. Plots C.2a and C.2b show the error in filter states 3 and 4 (velocity in x-
and y- direction of hardbody center-of-mass). This error again is zero-mean, but the
plus/minus one sigma of the filter-versus-actual error is well within the filter-
predicted plus/minus one sigma; peculiar to these two filter states. When the tuning
of the filter was so tight as to drive the filter-predicted plus/minus one sigma to meet
the filter-versus-actual error plus/minus one sigma, divergence was seen on the

position states.

Filter states 6 and 6 (x- and y- atmospheric states) of plots C.3a and C.4a show
the mean values of the actual filter and truth data plotted. The filter does a good job
in following the actual atmospherics, as is seen by the close proximity of the filter and
truth plots. The filter-versus-actual error for this data, plotted in C.3b and C.4b,
show that the error is very close to being zero-mean, considering the relatively small
number of MC runs. Also, the filter-predicted plus/minus one sigma i8 close to the
filter versus-aciual-error plus/minus one sigma, The tuning is tight for these states,
as is seen in the plus one sigma of the filter is actually inside the plus one sigma for
the filter versus actual ervor. The actual rms jitter ervor is 0.2 pixels, so these errors

are substantial compared to the size of the jitter. Note, the filter-predicted one sigma
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seen in all of the plots that show the filter-versus-actual error is a standard saw-
toothed pattern as anticipated for a propagate/update cycling of a filter, but it is
sampled (plotted) less frequently than the 60 Hertz sample rate and so has a strange

appearance in the plots.

The filter states 7 and 8 (Pogo position and velocity in the direction of the
velocity vector) are shown with the filter state data plotted against the truth model
in C.6ba and C.6a. Since the pogo amplitude is small the filter has a hard time of
precise tracking for this phenomenon. In plots C.6b and C.6b, the filter-versus-actual
error is plotted against the filter-predicted plus/minus one sigma. For both ~f these
cases, the filter-predicted plus/minus one sigmsx is outside of the filter-versus-actual

error plus/minus one sigma.

Filter state 9 (Offset distance between the plume centroid equililsrium point
and the hardbody center-of-mass) is plotted versus the truth data in 0.7a and the
filter-versus-actual error plotted in C.7b. These plots shov that the filter does a
pretty good job of estimating this state (ervor plot is approgimately zero-mesn). The
filter-predicted plus/minus one signa is close to the filterversuseactual ervor
plus/minus one sigma.

Plots C.8a and C.8b are the filter versus actual error of the x- and y- centroid

position (not an actual filter state but a linear coirbination of fiter states). Plot C.8a
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shows zero-mean but the plot of C.8b shows a slight 'sias for the y- centroid position.
This is not really an important error, as the fil'ers' main purpose is to track the

hardbody center-of-mass, not just the plume intensity centroid.

The plots labeled C.9 in Appendix C show the three different residuals with
their plus/minus one standard deviation. These plots show the residuals to be zero-
mean, given the 5-MC run simulation. The scaling of these residual plots is large so

as to allow easy comparison with later plots.

For the sake of brevity, only the plots from the different 5-run MC simulations
that have a direct bearing on this analysis will be shown from this point on. Also the
arror statistics of Tables 5.2 and 6.3 that are compiled for each of the simulations
wohld unduly expand this document; thus, only the error statistics that show trends
” .will ha shown. Tables 6.3, 6.6, 6.7, and 5.9 show a comparison of the Pogo Position
and Pogo Velocity ervors for all the simulations of each of the Sections 6.2.2.1-4.

The filter parameter values are changed to 0.112/20x (Far right point along the
constant 0.112 line v Pigure 5.2) to produce plots C.10 - C.12. The pogo position
state 7 plots (C. 10 for filter 0.112/20x; C.6 for filter 0.112/2r) reveal the differences
between the two different data runs. The filter bounces back and forth over the low
amplitude, but really doesn't track the "real world" low frequency pogo at all. The
scaling of plot C.10b is such that the filter is looking for a high frequency signal and
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the transients have not completely dissipated before the plotting routine starts (this
plotting routine starts at the fifth sample point). The plot of filter state 8 (pogo
velocity), C.11a and C.11b (note the y-axis scales), shows a large difference in the
pogo velocity during this data run as compared to the data run of Plot C.6a and C.6b.
When the pogo frequency is changed in the filter, such that there is a mismatch
between truth and model pogo frequency and filter-assumed frequency, the filter loses
its ability to track this state. The plots of filter states 1, 2, 3, 4, 5, 6, and 9 are

"close” to what is seen in Plots C.1,2,3,4,7, and 8 and are not shown.

Error statistics analysis of Tables 5.2 and 5.3 show that the two data runs are
close for the center-of-mass position and velocity states, the atmospheric states, the
offset state, and the centroid statistics, The pogo position of the high frequency filter
is better than the artificially informed filter, even though the tracking is obviously
off (Plot C.10). The most volatile state for this simulation is the pogo velocity state,
which has a much greater error in the high frequency filter, due to the erroneous
filter-assumed pogo frequency (and note that the velocity is not updated directly with
a measurement, unlike the pogo position). The rms error is almost five *imes as
great for this high frequency filter (Pogo position and velocity data are sammarized
in Table 5.4).
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Table 5.3 Time-Averaged Error Statistics for Elemental Filter

(Truth = 0.1122x, Filter = 0.112/20%)

*X and Y Hardbody Center-of-Mass
#Measured in the Direction of the Velocity Vector

The filter parameter values are then changed to 1.12/2x (Point at the upper left

State Mean Error (¢;)) | Mean Error (¢") STD. DEV. STD. DEV.
aft;) o(t;)
X Position* 0.061 0.062 0.429 0.403
Y Position* 0.0711 0.072 0.335 0.309
X Velocity 0.032 0.027 0.276 2.763
Y Velocity 0.037 0.025 2478 2472
X Jitter 0.021 0.022 0.427 0.39%
Y Jitter 0.025 0.023 0.469 0.452
Pogo Position# 0.005 0.005 0.133 0.137
Pogo Velocity# 0.064 0.056 4.531 4.558
Offset Distance# 0.040 0.043 0.541 0.541
X Centroid 0.039 0.038 0.446 70.434
Y Centroid 0110 ] 0.115 0.695 0.596

corner in Figure 6.2) to produce the data vuns shown in Plots C.13-16. Again, the

pogo position and velocity siates are different in the "high” amplitude filter. In plots

C.13b and C.14b, the errors don't "settle” as much as the exvors in Plots C.6b and

C.6b. This vesult is analytically seen from the comparison of the pogo position and

velocity states of Table 6.4. The ervors from this new filter are approximately 35%

greater in the pogo position state and approsimately 76% greater in the pogo velocity

state. Comparison of the residual output graphs of C.156 (new filter erroneously based
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Filter Parameter Values Pogo Position Erver oit,’}* Pogo Velocity Error oft)*
0.112/2n 0.176 1100
(Filter = Truth)
0.112/20n 0.137 4.558
1.12/2% 0.236 1.943
| 1.12/20n 0.285 16.471

Table 5.4 Summary of the Pogo Position and Pogo Velocity Errors for Truth Condition of
0.112/2r with Various Filter Parameter Values

*Errors at time, ¢;, were very similar to the error at time, ¢/, for all simulations.

on higher amplitude pogo assumption) and C.9 (correct filter/truth model agreement
on pogo amplitude) show almost no difference. If anything, the residuals of the
“incorrect” filter (C.15) are better than the “correct” filter residuals (C.9).

Again, the output graphs of {ilter states 1, 2, 3, 4, 5, 6, and 9 and the x- and
y centroid error are similar enough not to be shown. It should be noted that, for this
simulation, the "incorrect” filter has about a 10% smaller error on the y- direction
center-of-mass state. This possibly accounts for the laser vesidual seeming to be

slightly better for the "incorvect” filter versus the “correct” filter.

The filter parameter values are then changed to 1.12/20x (Upper right point
in Figure 6.2) to produce the output plots of C.16 - C.18. The pogo position filter
state (C.16a) and the pogo velocity filter state (C.17a) have been misinformed of both

the truth condition amplitude and frequency. Comparison of statistical ervor values
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of these states in Table 5.4 bear this out. The velocity state error is particularly
obtuse as the error for the "incorrect” filter is approximately 156 times the error for
the correct filter. Note the pogo velocity errors from Table 5.4; incorrect frequency
seems much more critical than the incorrect amplitude assumption. Close analysis
of the residual plots (C.18 for "incorrect” filter, C.9 for the “"correct” filter) show that
the "incorrect" filter residuals are slightly worse. The difference is almoét

imperceptible.

5.2.2.2 Truth Parameter Velues: Low Amplitude, High Frequency. The filter
1s artificially informed of the corvect truth conditions, an amplitude of 0.112 pixels
and a frequency of 20n radians per second, to produce the output filter state plots,
D.1 through D.9, of Appendix D. These filter state error plots will not be as
rigorously analyzed as was done in Section 5.2.2.1; just the important trends will be
explored. The ervor plots of the hardbody center-of-mass position and velocity states
(Filter states 1-4 plotted in Figures D.1a, D.1b, D.2a, and D.2b) and the ervor plots
for the two atmoespheric states (Filter states 6 and 6 plotted in Figures D.8b and
D.4b) are zero-mean with well-behaved plus/minus one sigma characteristics (filter
predicted one-sigina is close to the filter-versus-actual error plus/minus one sigma).
The pogo position and velocity states (Filter states 7 and 8 plotted in Figures D.b and
D.6) show that the filter tracks the true pogo position and velocity pretty well. Plots
D.6a and D.6a show this result clearly, as the filter mean values watch the true

conditions. Filter state 9, the offset distance between the plume centroid equilibrium
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point and the hardbody center-on-mass, is plotted in Figuye D.7, where the filter
oscillates over the true condition of 2.92 pixels. The error plot of D.7b is zero-mean
and non-divergent, with a plus one-sigma that is outside of the filter-predicted one-
sigma. . .is is again due to the tight filter tuning. The linear combination centroid
error plots, D.8a and D.8b, are both zero-mean. Table 5.6 shows the explicit exror

statistics for all of the filter states.

The filter parameter values are changed to 0.112/2r to produce a full set of

error plots for all of the iilter states. For brevity, only the plots that emphasize

State Moon Error (4) | Moan Ervor () |  STD. DEV.
, oft,)
X Position® 0.031 0.031 0.444
¥ Position* | 0us6 0.058 ]
X Velacity Cog 0028 279
Y Velocity 0.038 09025 24499

X Jitter 022 002 0428

Y Jittor 0025 0023 0468
PooPositiond | 0002 0.002 0085
Pogo Velocitg® | 0063 0.055 6262
Offset Distancet | 0021  oem 0514
XCentvold | 0021 ome (lﬁ*l'i
I Y Centroid | ()J);FS AL _ 0.678

Table 5.5 Tme-Averaged Ervor Statistics for BT emental Miter
{Truth = 0.11220x, Kilter = 0.112/20x)

*X and Y Hardbody Center-of-Mass
#Measured in the Direction of the Velocity Vector
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an important trend will be shown. The new "incorrect” (the filter assumes a low
frequency for the pogo) low frequency plots of filter states 7 and 8 (Pogo position and
velocity states) are plotted in Figures D.10 and D.11. The low amplitude/low
frequency filter does not do a good job of precise tracking of the position of this low
amplitude/high frequency truth conditicn (Plot D.11a). The pogo position error is
almost twice the position error of the "correct” filter. This is also seen from
comparisoﬁ of the error statistics of Table 6.6. The pogo position and velccity state
error for the “artificially” informed filter and the various other filter parar.ster values
of this sestion are summarized in Table 6.6. The pogo velocity state errer, which is
the usual problem, is within reasonable tolerance. There is little difference between

the residual output plots of D.9 ("Correct” filter) and D.11 (“Incorrect” filter).

Filter Parameter Values Pogo Position Eroroft)* | Pogo Velocity Evor of¢,)*
C 2w 0.09 6.208
(Filter = Truth) B N * o
0.0122n | 0165 6472
1.1220n 0389 ‘ 16560
0.250

Table 5.6 Sumuiary of the Fogo Position sud Pugo Velocity Ervors for Tyuth Coaditiva of
0.112720x with Varnious Filter Paraneter Values :

*Exvors at time, 1, were very similar to the error at time, ¢, for all simulations.
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The filter values are changed to 1.12/20x to produce a full set of plots, but just
the pogo position and velocity filter state plots will be shown, as the others are
similar to the plots from the "correct” filter. The pogo position and pogo velocity
(Figures D.12a and D.13a) piots show that the filter knows the frequency but is
missing the pogo amplitude (as expected from the programmed filter parameter
values). The comparison of the error statistics of Table 5.6 also show this, as both
states have more than double the error standard deviations. There is a slight, barely
perceptible difference in the FLIR (2) residual of D.9 ("Correct” filter) and D.14

("Incorrect” filter).

The filter values are changed to 0.112/2x (Both values are different from the
truth values) to produce Appendices D.16 - D.17. The " incorrect” filter is off in hoth
frequency aand axxzplimde for both the pogo position and velocity states, The errors
of Table 5.6 are not as different from the “correct” filter statistical ervors as might be
expected. The position state errors are still off by a factor of 2.5, but the velocity
state ervor is close. The residual plots are again very close with no perceptible

difference.

5.2.2.3 Truth Parameter Values: Large Amplitude, Low Freguency. The plots
for the filter parameter values that equal the truth conditions are located in Plots E.1
through E.9 of Appendix E. Filter states 1 and 2 (Figure E.1) show some excursions

from the flter-predicted plus/minus one sigma a8 the greater dynamis conditious
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corne into play, but no divergence is seen. The FLIR x- and y- velocity states are
contained within the filter-predicted plus/minus one sigma (Figure E.2). The
atmospheris states of E.3 and E.4 are very similar to what is seen throughout this
chapter. The pogo position: and velocity states are much more interesting with the
higher amplitude. The filter pogo follows the truth pogo very well in both the
posttica and velocity states (E.5a and E.6a), with both of their error plots being zero-
mesn with the filter-predicted one-sigma near the filter-versus-actual error
plus/minus one sigma. The filter does a nice job of predicting the offset state 9
(Figure E.7), with this error also being zero-mean. T" : centroid prediction plots are
also zero-mean, with some excursions from zero due to the higher dynamics. The
statistical errors for all of the filter states of this "artificially" informed filter are

c ummarized in Table 5.7.

The filter is then set to 1.12/20% to produce & full set of charts, with only the
interesting plots shown. The pogo position plot of E.10 and pogo velocity plot of E.11
show that, as expected, the filter canrat track the siow amplitude truth condition.
The filter residual outputs of E.9 ("Cozrect” filter) and E.12 ("Incorrect” filter) show

a now visual difference i1 the residuals for these two simulations.
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State Mean Error (¢;) Mea;m m
oft;) oft;’)
X Position* 0.099 0.098 0.763 0.756
Y Position* 0.061 0.062 1.207 1.186
X Velocity 0.042 0.040 2,851 2.843
Y Velocity 0.018 0.008 3.408 3.405
X Jitter 0.019 0.020 0.435 0.410
Y Jitter 0.023 0.021 0.475 0.452
Pogo Position# 0.045 0.045 0.500 0.491
Pogo Velocity# 0.011 0.019 3.893 3.815
Offset Distancett 0.066 0.069 0.674 0.675
X Centroid 0.046 0.046 0.766 0.748
Y Centroid 0.160 0.163 1.186 1162

Table 5.7 Time-Averaged Error Statistics for Elemental Filter
(Truth = 1.12/2x, Filter = 1.12/2r)

*X and Y Hardbody Center-of-Mass
#Measured in the Direction of the Velocity Vector

The higher dynamics has induced larger errors when the filter is using an
incorrest parameter value. Filter states 1-3 have errors of 0.956, 1.363, and 3.431
pixels (compared to the values of 0.766, 1.186, and 2.843 in Table 5.7), which are
approximately £0% higher than the errors for the simulation in which the truth and
filter parameter values are equal. The largest errors are still seen in the pogo
position and velocity states, as shown in Table 65.8. Table 6.8 cummarizes the pogo
position and velocity errors for all of the various filter parameter values for the truth
condition of 1,12/2n. Again, note the large pogo velocity errors for the filters which

assume a wrong pogo frequency.
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Filter Parameter Values Pogo Position Error o(¢;)* Pogo Velocity Error oft,’)*
1.12/2n 0.491 3.815
(Filter = Truth)
1.12/20n 1120 24.967
0.112/2n 1.130 6.957
0.112/20~ 1.157 11.465
e ——

Table 5.8 Summary of the Pogoe Position and Pogo Velocity Errors for Truth Condition of
1.12/2r with Various Filter Parameter Values

*Errors at time, #;, were very similar to the error at time, ¢;’, for all simulations.

The new filter paramecter values are set at 0.112/2n. Again the most
interesting output plots are the pogo position and velocity states, which are located
in E.138 - E.156. The small amplitude filter does not keep up with the truth condition
in either the position or velocity graphs, as expected. There is a very slight difference
in output residual plots of E.9 ("Correct” filter) and E.156 ("Incorrect” filter). The error
statistics, summarized in Table 5.8, show twice the error on the pogo position state

and slightly below twice the error on the pogo velocity state.

The next filter parameter values are (.112/20x (both values different from the
truth conditions), which yield plots that are shown in Figures E.16 - E.18. This
small amplitude, high frequency filter is unable to track the true pogo position and
velocity states (B.16a and E.17a). The error statistic comparison of Tables 6.8 also
shows this error. The FLIR residual plots of E9 ("Correct” filter) and D.18
("Incorrect” filter) show a slightly perceptible difference in the FLIR residuals, with

the laser residual having a visible difference.
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5.2.2.4 Truth Parameter Values: Large Amplitude, High Frequency. The full

set of filter plots for the simulation in which the filter conditions match the truth

conditions are shown in Figures F.1 through F.9 of Appendix F. The filter states 1

and 2 plots of F.1 show the very tight tuning and yet no divergence. The pogo

position and velocity plots show the filter keeping up with the truth condition in

amplitude and phase (F.ba and F.6a). Even in this extremely highly dynamic

environment, the filter has a good estimate of the offset distance (F.7). The error

statistics are shown in Table 5.9 for comparison purposes.

State Mean Error _(-;') Mean Error (2;') STD. DEV. | STD. DEV.
oft;) alt;’)
_ X Position* 0.054 0.053 _0.691 0.679
Y Pogition* _0.052 0.050 0.990 1.008
X Velocity 0.116 0.108 2.51 2951 i
Y Velocity 0.084 0.073 2.448 2.446
X Jitter 0.012 0.010 0.422 0.388
Y Jitter 0.033 0.033 0471 0.452
Pogo Position# 0.017 0.022 0.491 0.393
Pogo Velocity# 0.662 0.248 33,963 29.242
QOffset Distance 0.110 0.111 0.433 0.434
X Centroid 002 0.016 0.646 0.653
" Y Centroid 0.058 ~ 0.065 0.941 0.994
It ne__ | — ) . _

Table 59 Time-Averaged Frror Statistics for Elemental Filter
(Truth = 1.12/205, Filter = 1.12/20x)

*X and Y Hardbody Center-of-Mass
#Measured in the Direction of the Velocity Vector
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The filter values are set at the different conditions of: 1.12/2r, 0.112/20x, and
0.112/2n, with the pogo position and velocity states plotted in Figures F.10 - F.12
(Filter = 1.12/2n), F.13 - F.156 (Filter = 0.112/207), and F.16 - F.18 (Filter = 0.112/2x).
The same trends thnt were seen in the preceding sections where the pogo position
and velocity states inadequately track the truth condition are seen in the graphical
plots of Figures F.10 - F.18 and in the compiled error statistics of Table 5.10 for this

| extreme, highly dynamic case. Comparison of the filter residual of F.9 ("Correct”
filter) versus the FLIR residuals of F.12, F.15, and F..8 ("Incorrect” filters) yields a
magjor point of this research, as there is a discernible difference in residuals of the
filter with the correct versus incorrect parameter values. This information is used

for the choices of the MMAE configurations.

Filtor Parameter Values Pogo Pasition Error oft,)* Pogo Velocity Error oft,')*
1,12/20n 0.393 29.242
(Filtor = Truth) ,
1.12/2x 1.026 65.211
0.2112/20n 0.697 7 7 45810
0.112/n e 64.284

Table 5,10 Summary of the Pogo Pesition and Pogo Velocity Errors for Truth Condition of
1.12/20n with Various Filter Parameter Values

*Errors at time, ¢, were very similar to the orvor at time, &', for all sivaulations.
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5.2.8 Selection of Candidate MMAE Configurations. The criferion for selection
of the different test MMAE configurations is that the appropriate discretization of the
parameter space is based upon the residuals of the respective single-filter
simulations. The residuals of two filters (one filter's parameter values being equal
to the truth parameter values, the other having parameter values equal to one of the
other proposed elemental filters) are compared at a certain truth condition to see if
there is a difference in their residuals. These residuals will be used in the probability
calculations for each of the respective filters within the MMAE algorithm.

The residuals from the filters on the constant 1.12 amplitude line (Frequency
= 2r, 20n) are visibly different at each of the respective truth conditions (1.12/2x,
1.12/20n) and thus are candidates for elemental filters in the MMAK configuration.
At the lower amplitude truth conditions, none of the residusls are difforent enough
from each other to include or discard either of the two low amplitude elemental filters
automatically. This leads to three different configurations: two different 3.filter
modsls and a 4-filter model. The 3-filter MMAE models should definitely include the
elemental filters on the constant 1.12 amplitude line and perhaps one of the low
amplitude filters per MMAE model, thus making two candidate MMAE
configurations, The other configuration is a 4-filter model that would include both
elemental filters on the constant 1.12 amplitude line and both elemental filters on the

constant 0.112 amplitude line.
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Another different 3-filter configuration stems from the comparative results of
Tables 5.4, 5.8, and 5.13. The greater pogo velocity errors are those for cases in
which the "incorrect” filter frequency is different from the "correct” filter frequency.
This would Jead to having three different frequencies for each of the chosen elemental
filters in the MMAE configuration (This error result is not seen for the case of Table
5.6). A third low amplitude MMAE configuration is suggested to include the two high
amplitude filters as already analyzed, and a new low amplitude filter with a
frequency of 11xn (hisecting thé 21-20n constant 0.112 amplitude line). Thus, the two
lavge amplitude filters would be readily distinguishable from each other due to
assumed frequency for the pogo, und a single filter would handle the lower amplitude
pogo oacillations with an in@annetiiatg frequency to be representative of the physical

~ -

range of possibilities,

Another poasible MMAE configuration stems from earlier work in this research
line, when the tracking of tactical xsﬁesil:eswas investigated. A 5-filter MMAE model
would include ever higher amplitude filters (with an assumed pogo amplitude of 2.24
pixels) ab frequencies of 2xr and 20k, along Qvith the filters of 1.12/2x, 1.12/20r, and
011115, This niew high amplitude is nét physically motivated (2.24 pixels = 60
meters at the range of 2,000 kilometers; too large a realistic pogo effect) for this
particular problem, but scaling af‘pammem% and adaptation schemes using a larger
tracking window (24 x 24 versus 8 x § tracking window for this problem) could make
this MMAE filter configuration applicable.
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5.3 MMAE Simulation Results and Analysis

5.3.1 Introduction. The basic purpose for this research is to generate a
working MMAE model that is robust in parameter identification and has performance
capabilities that are close to the "best” that can be done at a particular real world
truth condition. The parameter identification will be enhanced through appropriate
discretization of the parameter space, as introduced in Figure 5.2. The proper
discretization is carried out by investigating the probability calculations of each of the
elemental filters in the MMAE bank: the filter with the highest calculated probability
should be the filter with the parameter values which are closest to the real world true

parameter values.

The actual implementation of this MMAE model is shown by the block diagram
of Figure 6.1 except the Kalman filter block is replaced with the MMAE algorithm
composed of several Kalman filters running in parallel. The different configurations
of this MMAE algorithm that were introduced in Section 6.2.3 are listed in Table
b.11. Sections 5.3.2-6 detail the results and performance analysis from the computer
simulations of the different configurations of Table 6.11

As Figure 5.2 showed, five points were considered for the elemental filters of
an MMAE algorithm., The two upper points are essential to performance because
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Number of Filter Parameter Values - Amplitude-Frequency of Oscillation i
Filters
Config #1 3 0.112-20n 112-2r 1.12-20n
Config #2 3 0.112-2x 1.12-2n 1.12-20n
Config #3 3 0.112-11n 1.12-2n 1.12-20n
Config #4 4 0.112-2n 0.112-20n 1.12-2n 1.12-20n
Config #5 5 0112-11x 112-2n 1.12-20n 2.24-2n 2.24-20r

Table 5.11 Test MMAE Configuration

at the higher amplitude, it pays to estimate pogo, as the two points yield very
distinguishable residuals. Chronologically, the four corner points were considered,
then one or the other low amplitude points was removed, and finally, three points
were considered, but with the low amplitude filter assuming the intermediate

frequency at 1° .

A side issue is explored concerning the probability density function calculation
of Equations (2.30) and (2.31). These equations contain the covariance of the
residuals, A4,(2), in the leading coefficient and the exponent of the density functios.
In previous work [36), the results improved when this covariance has been stripped
out of this calculation. In other words, the probability caleulation could be casried
out without uging the leading coefficient, or with A,(¢,) removed from the exponential
term of Equation (2.31) as well. This issue will be explored in Section §.3.2, with
Sections 5.3.3-6 using the methed that yields the best parameter identification
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results. The conclusion that is reached from this exercise is that the best parameter
identification results are seen when the leading coefficient is removed and the
covariance of the r :siduals, A,(2,), is removed from the exponent in the calculation of
Equations (2.30) and (2.31). This conclusion is thought to be based on the possibility
that the A,(¢) matrix is ill-conditioned.

5.8.2 MMAE Configuration #1 (Filter Parameter Values: 0.112/20rw, 1.12/2xw,
1.12/20m). This MMAE filter configuration is tested at various truth conditions with
b-run Monte Carlo (MC) simulations and is shown pictorially in Figure 5.3. The
tested truth conditions will first be the three parameter values of the included
elemental filters, to analyze the effectiveness of the configuration against known
conditions. The following data runs will be with truth conditions that are chosen to
explore the discretization of the parameter space. Each of the simulations in this
section will be run three different times to investigate the effect of the covariance of
the residuals on the probability calculations. The first run will have the leading
coefficient and the covariance of the residuals, A,(¢), intact in the calculation of
Equation (2.31). The second run will have the leading coefficient stripped from
Equation (2.31). The third run will have the coefficient and A,() eliminated
completely from Equation (2.31). These simulations will be analyzed o« performance
of the filter and for proper discretization of the parameter space. Performance of the
filter will also be compared to the single-filter runs from Section 5.2.
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® - Elemental Filters
Filter #1 - 0.112/20x Parameter Space
Filter #2 - 1.12/2n
Filter #3 - 1.12/20r
1120 —— ®
Plume Pogo 0.784~1—
Amplitude
0.448 ——
012 —— ®
| | |
I I |
2n 11in 20n
Plume Pogo Frequency

PFigure 5.3 Configuration #1 Parameter Space

The output graphical results for this section are presented in Appendix G. Due
to the large number of output plots, only the plots that support important trends will
be presented. The important graphs from this section are the full set of plots that
display each of the Bayesian blended states for comparison to the previous sections’
plots at each truth condition. This full set of plots will be the simulation in which the
coefficient is removed and the covariance of the residuals is stripped from the
exponential caloculation of Equation (2.31). This method provided the most consistent
and true probability calculationrfor the discretization of the parameter space, which
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is shown by the "averaged probability” output plots from each elemental filter of the
MMAE configuration (see, for instance, Figures G.9 through G.11). The performance
of this filter configuration is compared to that of the single filter with the "artificially”
informed parameter values. The same compilation of the error statistics from the
simulations in which there is no leading coefficient and no A,(t) is shown for

comparison to the data runs from Section 5.2.

5.3.2.1 Configuration #1 Run with Truth Parameter Values = 0.112/20n. The
parameter space and the MMAE Configuration #1 are shown in Figure 5.3. This is

the space in which this configuration #1 will attempt to operate.

Figures G.1 - G.8 show the output of MMAE filter states 1-9 and the linear
combination centroid plots. These plots should be compared to plots of the
“artificially” informed filter run at this truth condition (Figures D.1 - D.8, in
Appendix D). The plots from the MMAE configuration comipare very well against all
of the single filter plots from the “artificially” informed filter. The noticeable
difference is in the pogo position and velocity states (G.6a and G.6a versus D.5a and
D.8a), in which the filter estimates in the MMAE plots appear to be overchooting in
amplitude the truth data although the filter-predicted plus/minus one sigma contains
the filter-versus-actual error in plots G.5b and G.6b.
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The statistical errors compiled in Table 5.12 also show that this MMAE

configuration does a good job of tracking on all states when compared to the error

statistics of the "artificially” informed filter (Table 5.5). The differences in the pogo

position and velocity states are seen in the error statistics as the MMAE produces

almost twice the position error and about a 20% higher velocity error.

The "averaged probability” plots compare the output probabilities of the three

elemental filters, defined in Figure 6.3, when the simulation uses the three different

*X and Y Havrdbody Center-of-Mass
#Measured in the Direction of the Velocity Vector

Table 512 Time-Averaged Error Statistics for MMAE Configuration #1
' {Truth = 0.112720%)
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State Mean Exvor (¢,) | Mean Ervor ¢') STD. DEV.

_ aft’)

X lf’ositinn’ 0.016 0.016 0.442 0.416
Y Position® 0.046 0.0417 0299 0.278
X Velocity 0.019 0.018 2134 293
Y Vilocity 0.671 0.058 244 2,401

X Jitter 0.020 0.021 0427 0,98

_Y ditter 0.025 0.022 0.462 0441
Pogo Position# 0001 0.000 0.170 0171
Pogo Volocity# 0.131 0.056 1.863 8.608
| Offsct Distanced 0.028 0030 0409 0.409
X Centroid 0004 0.002 0.449 0.432

Y Centroid 0.069 0.074 0528




methods of the probability density function calculation. Figure G.9 shows the
averaged probabilities (over the 5 MC runs) of the case where the leading coefficient
is stripped off and the residual covariance, A,(t), is not used in the exponent
calculation. All three of the filters take a share of the probabilities, no one filter
dominates and certainly not filter #1, for which this truth condition matches. Plot
G.10 shows the case where the coefficient is used and A,(¢) is used in the exponent.
Filter #2 looks to win out over the other tweo filters although the other two filters do
take some of the probability. Figure G.11 shows the case where the coefficient is
stripped from the calculation of Equation (2.31). These plots show the wrong Filter
#3 taking all of the probability almost immediately. Despite this difficulty in
correctly identifying the "correct” discrete parameter point, the state estimation does
not suffer terribly due to small amplitude pogo (seen from comparison of Tahles 5.6
-and 5.12).

5.3.2.2 Configuration $1 Run with Truth Parameter Values= 1.12/27. Pigures
G.12 - G.19 show the output graphs of all of the Bayesian blended filler states. These
plots should be corapared against Figures E.1 - E.8 from Appendix E, the cutputs
from the single filter run in which the filter conditions equal the true condition. The
plots from the MMAE compai'e favorably with the single filter plots (despite an
unexplained glitch in the datajust after the six second point). On the pogo position
and pogo velocity plots (G.16, G.17, E.6, and E.6), the MMAE filter estimate is not
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quite as good as the single-filter pogo position estimate. This is reflected in the error

compilations of Table 5.13 and Table 5.8.

The averaged probability plots of G.20 - G.22 show that when the coefficient
is not used and A,(t) is not used in the exponent (G.20), the correct filter (Elemental
filter #2) takes over the majority of the probability with a steady gain over the course
of the simulation. The probability stays above the 50% mark at approximately one

and a half seconds (90 sample periods). The plot where the coefficient and A,(z;) are

IT State Mean Error (¢;) | Mean Error (¢;") STD-.—D};V. STD. DEV.

oft;) o(t’)

l X Position* 0.147 0.148 0.881 0.866

Y Position* 0.107 ) 0.105 1.378 1.357

X Velocity 0.027 0.028 3.097 3.089

Y Velocity 0.026 0.023 3.490 3.494

X Jitter 0.019 0.020 0.432 0.407

Y Jitter 0.028 0.027 0.467 0.443

Pogo Position# 0.024 0.023 0.579 0.569

Pugo Veloc: 0.015 0177 4213 4.619

Offset Distance# 0.177 0177 _ 0.897 0.899

X Centroid 0.051 006! 0.769 0.762

Y Centroid 0.070 0.071 1.211 1.190
e e AR S NSyt |

Table 5.13 Time-Averaged Error Statistics for MMAE Configuration #1
(Truth = 1.12/2n)

*X and Y Hardbody Center-of-Mass
#Measured in the Direction of the Velocity Vector
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used (G.21) show the correct filter #2 taking the majority of the time. The filter #2
probability curve is not as smoJth or consistent as was seen in 7x.20. Figure G.22
depicts the case where the coefficient is not used in Eqration (2.31). The wrong filter
#3 has most of the probability until the end of the simulation, when filter #2 takes

some probebility.

5.3.2.3 Configuration #1 Run with Truth Parameter Values = 1.12/20mn.
Figures G.23 - G.30 depict the output filter states that should be compared to the
single-filter results in Figures F.1 - F.8 of Appendix F. The robustness of the MMAE
is shown in the very favorable comparison between these sets of output plots. The
error statistical comparison between the data of Tables 5.14 and 5.9 show that the
errors in all of the filter states are extremely close (except the MMAE has a smaller
error on the offset filter state 9).

The averaged probability plots of G.31 - G.33 show that all cases have the
correct elemental filter taking almost all of the probability in a very short time. The
plot corresponding to the case in which the coefficient and 4,(¢) are not used (G.31)

is less neisy than the plot where Equation (2.31) is intact (G.32) and the plot where

just the coefficient is stripped off (G.33).




State Mean Error (¢;) | Mean Error (¢;') STD. DEV. ] STD. DEV.

oft;) olt;’)

X Position* 0.076 0.074 0.681 0.669

| Y Position* 0.007 0.009 0.984 0.999
| X Velocity 0.143 0.135 2,977 2.975
Y Velocity 0.064 0.053 2,491 2487

X Jitter 0.008 0.005 0.420 0.387

Y Jitter 0.035 0.035 0.472 0.456

Pogo Position# 0.019 0.023 0.491 0.402
Pogo Velocityi# 0.592 0.172 34.032 29.645
Offset Distance# 0.107 0.108 0.370 0371
X Centroid 0.010 0.005 0.646 0.653

Y Centroid 0.115 0.122 0.936 0.981

e

Table 5.14 Time-Averaged Error Statistics for MMAE Configuration #1
(Truth = 1.12/20%)

*X and Y Hardbody Center-of-Mass
#Measured in the Direction of the Velocity Vector

5.3.2.4 Discretization of Parameter Space for Configuration #1. Discretization
of the parameter space of Figure 6.3 is continued by selecting several sets of truth
parameter values to run through the MMAE configuration #1. The averaged
probabilities are plotted, with the sum total of these output graphs defining the
analysis of this discretized parameter space. The plots of the last three sections
reveal that filter #1 did not take the total probability; therefore, concentration will
be initially place on the constant 1.12 amplitode line. Only the plots of the
probabilities calculated using the method in which the leading coefficient and A4,(¢)
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of Equation (2.31) are not used have been included. This method provided
consistently better parameter identification results. The chosen truth conditions and

the Appendix location of the output probability plots are summarized in Table 5.15.

As the constant amplitude 1.12 line is traversed, it is seen that, indeed the
parameter space is divided between the two high amplitude filters. At the
frequencies of 4n, 8x, and 9.57, filter #2 takes the majority of the probability. Filter
#3 starts to take over at a frequency between 9.6n and 11xn (the point seems to be
closer to 117 from the shape of the graphs). As the amplitude is decreased along the

constant 20x line, it is seen from Plots G.39 - G.40 that Filter #1 is never able to take

Truth Condition Filter with Majority of Appendix iocation
» Probability 7 i
1.12/4x 2 G.34
1.12/8% 2 G35 J
_1.12/9.6n 2 G.36
1.1211n 3 G.37
i 1.12/14n 3 G.38
0.784/20r 3 G.39
0.448/20n 3 G40 “
0.112/20n 2

Table 5,16 Configuration #1 at Various Truth Conditions




the majority of the probability. The output plots from the final point of Table 5.15
look very similar to the output plots of G.20 (Truth = 1.12/2n), despite the strange

result of Filter #2 attracting the majority of the probability for this point..

5.3.3 MMAE Configuration #2 (Filter Parameter Values: 0.112/2xn, 1.12 [2r,
1.12/20%). This new 3-fiiter configuration is shown in the parameter space of Figure
5.4. Note that the two large-amplitude discrete points are retained from the previous
configuration, but that the small-amplitude discrete point is switched from high to
low frequency. Having both large-amplitude points is critical to performance, but it
seems that only one low-amplitude point is needed, and this configuration addresses
sensitivity to placement of that small-amplitude point. The analysis of this section
will focus on the discretization of this parameter space, especially as it compares to
that of the previous configuration. The filter state output plots from this 3-filter
configuration (at the three truth conditions corresponding to the conditions assumed
by each of the three elemental filters) compare to the output plots from the "correct"
siﬂgle-ﬁlter run (Truth conditions = Filter conditions) just as favorably as was seen
in Section 5.3.2 and thus will not be shown. The error statistics for this MMAE and
the single-filter run also matched as well as was seen in the last section and again
will not be presented.
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6 - Elemantal Filters
Filter #1 - 0.112f2x Parameter Space
Filter #2 - 1.12/2x
Filter #3 - 1.12/20x
1120+ @ ®
Plume Pogo 0.784——
Amplitude
0.448 ——
ai2—— ®
] | |
| | |
2n 1n 20n
Plume Pago Frequenc

Figure 6.4 Configuration #2 Parameter Space

The outout probability plots from these MMAE runs are the graphs of
Appendix H. The actual truth conditions against which configuration #2 was run are
swnmarized in Table 5.16 with the Appendix location of these plots.

The results from analyzing the plots of Appendix H show that the parameter
space can be partially divided into sections in which one or the other large-amplitude
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Truth Condition Filter v;u:—h Majority of Appendix Location
Probability

1.122n 2 H1
1.12/8n 2 H2
1.1210% 2 H3
1.1210.5% 2 and 3 H4
1.12111x 3 H5
1.1212n 3 H6
1.1214xn 3 H.7

f 1.12/20n 3 H.8
0.448/2n 2 H9
0.112/2n 2 H10
0.05/2n 2 H1
0.112/20n 2and 3 H12

Table 5.16 MMAE Configuration #2 at Various Truth Conditions

filler dominates the probability calculation. There is a clear division where this
occurs along the constant 1.12 amplitude line. Filter #2 takes the majority of the
probability at a frequency of 10n while filter #3 gets the majority at 11x. The area
of 10x-11x is where this hardover shift occurs. Again, the filter #1 of this
configuration couldn't be forced to take over the probability even when the amplitude
went to 0.06 (H.11). The data run of the last entry of Table 6.16 shows a kind of
"nebulous” region where the probability is spread around among the filters,




5.3.4 MMAE Configuration #3 (Filter Parameter Values: 0.112 /11w, 1.12 /27,
1.12/20n). The next logical configuration choice for a low amplitude filter was tried
in 3-filter MMAE configuration show in Figure 5.5. This configuration brought the
greatest success in the discretization of the total parameter space. Tne output plots
are located in Appendix I, with Table 5.17 summarizing all of the truth conditions

against which this configuration was run.

® - Elementa! Filters
Filter #1 - 0.11211x Parameter Space
Filter #2 - 1.12/2x
Fiiter #3 - 1.12/20x
20— ® ®
Plume Pogo 0.784——
'Amplitude
0.448 ——
0.442 ~—— ®
A |
! I
2% 1ix 20%
Plume Pogo Frequancy

Figure 6,6 Configuration #3 Parameter Space
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Truth Cendition Filter with Majority of Probability Appendix Location
1122r 2 I1
1128n 2 12

1129.6n 2 13
1121n 1 I4
11212,6n land 3 15
112/14x 3 16
112/20r 3 1.7
0.784/2r 2 18
0.784/9.6n 2 19
0.784/10.6n 1 110
0.784/11r 1 111
0.784/11.6n 1 112
0.784/12.6n 1 and 8 113
0.784/20n 3 114
0.448/2rc 2 116
0.4480.6n 1 and 2 118
0.448410.6n 1,2,and 8 127
0.448/11r 1 118
04481 2.6r land 3 119
f 0.448/13r 3 120
0.448R0n 3 121
0.1122r 1and 2 122
011211n 1and 3 128
011220 1,2,ad 8 124
224R2r 2 126
2248 br 2 126
2244110 1 127
2244 26n 3 128
22400 3 120

02811

0.2820%
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The partitioning of this parameter space turns out to be dictated by the
frequency parameter, as is shown in Figure 5.6. In scanning the plots of Appendix I
along the constant amplitude lines of 1.12, 0.784, and 0.448, the low-frequency filter
takes the most probability at 9.5x for the three different amplitudes. An observation
to note is the startling similarities of the constant-frequency plots at 11x (1.4, L.11,

and 1.18).

- Elemental Filters
® Filter #1 - 0.112/11x Parameter Space

Filter #2 - 1.12/2x
Filter #3 - 1.12/20=
w01 Q@ Filter ®
#1
/ Space \Sﬂa
0.784—— :
Plume Pogo . o, .
Amplitude Fllteb#{épaoe Filter #3 Space

Ny AN

s A

R L
| | |
! 1 |

2x 1x 20=

Piume Pogo Frequency

Figurc 5.6 Discretization of Parameter Space Configuration #3
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Another region that has "similay  probability plots ir ilong the constant 0.112
line where filter #2 takes over at low frequencies wit.a filter #1 taking some
probakility at 2n, 11x, and 20n. This region was called a "nebulous” region because
there is no dominant filter. Plots I.30 and I1.31 show an extension of this area. This
"frequency” discretization extends higher in amplitude as seen from scanning the
constant 2.24 amplitude plots of 1.26 - 1.29. Also, plot 1.31 shows filter #3's
dominance even at the low amplitude of 0.28 (chosen to be halfway between the

amplitudes of 0.11~ and 0.448 pixels).

5.3.5 MMAE Configuration i#4 (Filter Parameter Values: 0.112/2n, 0.112/20r,
1.12/2r, and 1.12/20%). This 4-filter MMAE configuration was partially explored for
the discretization of parameter space of Figure 5.7. The truth parameter values and

Appendix J location of the output plots are summarized in Table 5.18.

The results from this configuratrn show a definite break in the parameter
space along the constant 1.12 amplitude line between filter #3 and #4. The low
amplitude filters #1 and #2 never really took the probability, even when they were
(supposed to be) based upon the best parameter values. This strange partitioning of
the parameter space is now expected, following the results from Section 5.3.3. Itis
worthy of note how similar the plots are when traversiug the 2x constant frequency
line (J.2,J4.6, and J.10). Also interesting are the charts along the constant 20x
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® - Elemental Filters
Filter #1 - 0.112/2x Parameter Space
Filter #2 - 0.112/20x
H4RE S
Filter #4 - 1.12/20x 1120 L ® ®
Plume Pogo 0.784——
Amplitude
0448 ——
oi2—— Q@ ®
| | |
I l [
2% 11n 20n
Plume Pogo Frequsncy

Figure 6.7 Configuration #4 Parameter Space

frequency line. Starting from the highest amplitude and going to lesser amplitudes
along this line (1.12 « 4.6, 0.784 - J.8, 0.448 - J.9, and 0.112 - L.7), the plots act as
- they should, with the averaged probabilities of filters #2 and #4 pulling against one
another for the probability (#4 "wing" in J.6 and J.8, with #2 “winning" in 1.9). Then
the curious happens when the amplitude hits 0.112, where the “nebulous” effect
described in the preceding scction takes over. |
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e
Truth Condition Filter with Majority of Appendix Location
Probability
1.12/2n 3 Jl1
1.12/8r 3 J.2
1.1211xn 4 J.3
11214n 4 J.4
1.12/20n 4 4.5
0.112/2n 3 J.6
0.112/20n 3 J.7
0.784/20= 4 J.8
0.448/20n 2 J.9
0.448/72n 3 410

Table 5.18 Configuration #4 with Various Truth Conditions

5.3.6 MMAE Configuration #5 (Filter Parameter Values: 0.112/11x, 1.12/25,

1.12/20r, 2.24 /2w, 2.24/20%). This last MMAE configuration was tried to see if the

filter could distinguigh the truth conditions between the higher amplitudes of 1.12

versus 2.24 at the constant frequencies of 2z and 20r, and further, if there would be

any substantial benefit of including the two additional filters upon state estimation

precision. The parameter space is shown in Figure 5.8, and Table 65.19 summarizes

the truth conditions that were used.
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Trath Condition Filter with Majority of Appendix Location
Probability
1.12/2r 2 K1
2.24/2n 2 K2
1.12/20n 3 K3
2.24/20n 3 K4
0.448/11n 1 Kb

Table 519 Configuration #5 with Various Truth Conditions

® - Elemantal Filters |
Fllter #1 - 0.112/11% Parameter Space
Flitor #2 - 1.12/2x
Filter #3 - 1.12/20n
Riar 3 224200
200 @ ®
Plume Pogo
Amplitude v+ @ ®
G142 = ®
» , ! :
2z 1ix 20z
Piume Pogo Frequency

Figure 5.8 Configuvation #56 Parameter Space
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effect to be. seen in other state estimat<s, including the estimate of hardbody location.

This chapter has shown that a working elementasl filter exists that was successfully
used in several MMAE algorithm structures for the purpose of discretizing the two
dimensional parameter space of amplitude and frequency of oscillation of the plume

pogo phenomenon.
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V1. Conclusions and Recommendations

6.1 Introduction

This chapter summarizes the final conclusions of this thesis and suggests areas
for further study. Section 8.2 draws conclusions based on the results obtained in
Chapter V. Section 6.3 contains suggestions for continued research in applying this
FLIR/Low-Energy-Laser algorithm to the ballistic ﬁisdle tracking problem.

6.2 Conclusions

Numerous conclusions have been made throughout this research. These

conclusions are presented in the following subsections.

6.2.1 Single-Filter Data Runs. The initial portion. of this work dealt with
becoming familiar with the FORTRAN computer program that implemented this
tracking scenario. The main purpose, in this beginning stage, was to test the four
(and an eventual fifth) proposed elemental filters to ensure that » working Multiple
Model Adaptive Estimation algorithm could be pursued. The task at hand was to get

the filter working properly. There were four seemingly minor errors found in the
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software that, when fixed, provided this working single-filter algorithm. The
interested reader is referred to the thesis advisor for the actual corrections to the

code.

The main and most important conclusion drawn from the first half of this
research is that the single-filter model works at the propesed filter parameter values
for amplitude and frequency of oscillation of the pogo phenomenon. This conclusion
is verified by the plots of Appendices C through F. The "wrongly” programmed filters
provide output according to these "wrong" input pogo parameter values, with the
higher errors seen on all of the states and especially the pogo position and velocity
states. The "correctly” programmed filters follow the truth model state if the
amplitude of the pogo is large enough (the "correct” filter is not really able to track
a small amplitude pogo value precisely, but it is not essential to be able te de so at

such small amplitudes),

An obvious conclusion from these single-filter data runs is that residual-
monitoring of the Kalman filters is a powerful tool which is applied to this specific
tracking problem. The residual outputs from these single-filter data runs were
. analyzed and then used to pick the "best’ MMAE structure for this particular
| problem. The lack of success with the 4-filter and 5-filter structures of this thesis
was predicted from the filter residual analysis. This is also the case for the partial
success of MMAE coafigurations #1 and #2 (two of the elemental filters were
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programmed with the same frequency in these configurations). Residual monitoring

was a key ingredient to this research.

A final conclusion from these single-filter data runs comes from the necessity
of accomplishment of these baseline data runs. The single-filter error data from the
"artificially” informed Kalman filters was used as a benchmark for comparison: a
"best that can be done." Also, the plots of the individual states were comparison tools
for the completed MMAE. Going through this initial work was essential to the
success of this MMAE algorithm.

6.2.2 MMAE Data Runs. The success that is seen in the final portion of this
research is directly attributable to the residual-monitoring that has been described
throughout. MMAE configuration #3 was the most successful in partitioning the
parameter space. The clear boundaries of transition between the filters' probability
dominance is a little surprising because of the small difference in the residual
quantities. This configuration holds the most promise for an implementable
configuration.

An idea coming from the analysis of this parameter space points to an
“attraction of probability” that is seen or not seen in the MMAE configuration
outputs. There seems to be more parameter space probability attractability as the
pogo frequency and amplitude increase: as one goes higher and to the right in the
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defined parameter space. This "obvious" idea is readily seen in the constant 0.112
and 1.12 amplitude lines. The differences between the residuals of the filters at
1.12/2n and 1.12/20n are very noticeable, while virtually no difference exists in the
residuals of the lower amplitude filters of 0.112/2r and 0.112/20x%. Also, the constant
frequency lines of 2n and 20n pertially chow this idea, as there is a partial
partitioning that forms between the constant frequency filters of 1.12/20n and
0.112/20x in Configuration #1. This partial partitioning is not seen in the lower
frequency filters of 0.112/2x and 1.12/25 in Configuration #2. Finally, the transition
area along the constant 1.12 amplitude line for configurations #1 through #3 occurs
closer to the smaller frequency filter of 1.12/2x. The larger frequency filter of
1.12/20n is more dominant. These ideas point to a larger "attraction of probability"

as amplitude and frequency are increased in this parameter space.

Throughout this MMAE section, the dominant parameter value is frequency.
The parameter epace is almost entirely partitioned according to this parameter. This
fact should be a consideration when this research line moves forward. This frequency
dominance is not surprising, and it even makes sense. It is essential in the tracking
of a signal to be in correct synchronization and phase with an incoming signal. The
tracker has no chance at all, if out of synchronization. If the amplitude is off, the
errors have larger deviations from the zero-error line but, the error signal cycles

through this zerc-error line.
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The side issue that was explored in Section 5.2 showed a marked difference in
the probability results that were obtained from the three different probability
calculation methods. The method used throughout the main portion of the MMAE
runs is called Maximum Entropy with Identity Covariance (ME/T) [3]. The covariance
of the residuals is removed completely from the probability calculations by setting
this variable to the identity matrix. The covariance matrix is thought to be possibly
misrepresented due to model uncertainties, and thus to weight all residuals equally

in the probability calculation, the covariance is set to identity.

6.2.3 Final Performance Issues. The MMAE algorithm Configuration #3 had
very comparable tracking statistics of filter states #1 and #2, the hardbody center-of-
mass, even when correct parameter identification broke down in the "nebulous,” low
pogo amplitude region. These error statistics are shown in Tables 6.1 through 6.4.
When the truth parameter values resided in the nebulous region, all of the MMAE
individual states had error statistics very comparable to the "best” single-filter except
the pogo position state. The MMAE saw 33% higher errors than the "best" single-
filter for this state. It is thought that the two higher amplitude/frequency filters were
causing this larger pogo error by artificially amplifying their own particular pogo
position error. When the truth conditions were set to higher pogo amplitude values,

the pogo position errors revealed good agreement between the MMAE and the single-




" Truth = 0.112/2n Center-of-Mass Errors
Filter = Filter State #1 - x error Filter State #2 - y error
0.112/2x 0.402 0.313
1.12/2n 0.395 0.280
0.112/20n 0.403 0.309
1.12/20x 0.417 0.291
MMAE Configuration #3 0.409 0.283

m

Table 6.1 Center-of-Mass Error Comparison; Truth = 0.112/2x

Truth = 0.112/20n

Center-of-Mass Errors

Filter = Filter State #1 - x error Filter State #2 - y error
0.112/20n 0.418 0.304

“ 0.112/2n 0.408 0.381 |
1.12/20n 0418 0.274
112/21: 0.421 ¢.286

MMAE Configuration #3

0.416

0.278

Table 6.2 Center-of-Mass Error Comparison; Truth = 0.112/20%

Tyuth = 1.12/2x

Center-of-Mass Errors

Filter = Filter State #1 - x error Filter State #2 - y error
1.12/2n 0.766 1.186
1.12/20x 0.956 1.353
 0112/2n 0.878 1437
0.112/20n 0.900 1427
MMAE

Table 6.3 Center-of-Mass Exvor Comparison; Truth = 1.12/2g
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Truth = 1.12/20n Center-of-Mass Errors “
Filter = Filter State #1 - x error Filter State #2 - y error "
1.12/20n 0.679 1.008 |
1.12/2n 0.788 1.001
0.112/20% 0769 1174
0.112/2n 0.771 1.289

MMAE Configuration #3 0.671 0.991

Table 6.4 Center-of-Mass Error Comparison; Truth = 1.12/20n

filter data runs. Again, the accuracy of estimating this pogo position state is
important, but not as critical as the tracking of the hardbody center-of-mass (filter
states #1 and #2).

6.3 Recommendations

This section concludes this thesis with a number of suggestions for future
research topics. The suggestions are divided into two major parts that are described

in the following subseutions.

6.3.1 Further Research With Current MMAE Scheme. The most cbvious
recomumendation would be a direct follow-on thesis that further investigates the
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partitioning of the parameter space using several different MMAE configurations.
The higher probability attracting areas could be exploited with the positioning of
more elemental filters to take advantage of the residual differences, to try to
minimize the tracking errors caused from the incorrect assumptions of the frequency
and amplitude parameter values. A possible suggestion for this different
configuration would be to have no low-amplitude filters, but to have all of the filters
programmed in a "one-dimensional’ parameter space across the constont 1.12
amplitude line. A variation of this scheme would have one low-amplitude filter
programmed with an amplitude between the 1.12 and 0.112 values (0.448 or 0.784)
with a frequency that is different from 20n (approximately 14x, for the purpose of
exploiting the frequency partitioning phenomenon), along with the two high
amplitude filters of 1.12/2n and 1.12/20n. This configuration could take advantage
of the partial partitioning that was seen along the constant 20x line in Configuration
#1, while also taking advantage of the different frequency parameter values. This
new MMAE configuration's tracking errors would then be compared to the "best’
single-filter and the MMAE configuration #3 of this research.

The expansion of the parameter space higher in amplitude should also be
investigated if the tracking scenario should change. Divergence was seen when
amplitude values of five times the current amplitude values were programmed into

the filter. Although the higher smplitude pogo values were not physically motivating
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for this particular scenario, should the tracking range be changed to a value less than

the current 2,000 kilometers, such high pogo amplitudes could become a major factor.

6.3.2 Implementable Algorithms. A look to the future at this point might bring
further suggestions for research topics. The current MMAE scheme could be used to
estimate the pogo amplitude and frequency parameters. A single Kalman filter would
be used as a state estimator that would have the pogo parameters periodically
updated by parameter estimates from the MMAE algorithm.,

Different tracking scenarios could also be accommodated with this particular
MMAE algorithm. Individual pixels on the 300 x 500 FLIR could be combined in
groups, then to be used as single pixels in some of the elemental filters of the MMAE
algorithm of this thesis. There would still be an 8 x 8 tracking window, but each
pixel of this 8 x 8 window would be made up of a cluster of individual pixels. The
number of pixels per cluster could be scaled as a function of the range to a target.
This adaptation scheme would use an MMAE algorithw similar to what is presented

in this thesis.
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Appendix A

Data Processing Statistics Method

This Appendix explains how the statistics listed in the thesis and plotied in the succeeding

appendices were determined. The equations for the statistics and the data used to plot them are

discussed.




The performance of the Kalman filters used in this thesis is evaluated using multiple
Monte Carlo runs. A Monte Carlo analysis involves collecting statistical information generated
from simulating samples of stochastic processes [21]. Ten Monte Carlo runs are generally
considered sufficient to converge to the actual statistics that would result from an infinite number
of runs [9,24]. After collecting N samples of truth model and filter model data for each of N
Monte Carlo runs, the true error statistics can be approximated by computing the sample mean

error and error variance for the Nruns. The sample mean error and error variance are computed

by:
- 1 ¢ (A.1)
ZORE- W NCREMO) '
W) = o E‘ [ - 50 ®)] - T w‘) (A-2)
where:
E@) =  samplemean of the error of mwmu at time L
o'r) = sample error variance at time §,
Xeaall) = truth mode! value of the variable of interest at time i, during sinmulation 8
Rguraft) =~ filter estimate of the variable of interest at time &, during simuiation »

N = number of Mente Caslo runs




The statistics are calculated before the measurement update at (¢;) and after the update
at (4*). In the performance plots displayed in Appendices B through E, the statistics at each
instant in time are plotted together; that is, the statistics before and after the measurement update
are plotted on the same time axis. They are reduced further to obtain average scalar values over
the time of the run, by temporally averaging the mean error and standard deviation (G) time
histories from two seconds into the simulation until the end. The first two seconds are not used
to ensure that the data reflects only steady state performance [9]. The errors are measured in
units of pixels, where a pixel is 15 microradians on a side (approximately 3¢ meters at a distance

of 2,000 kilometers).
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Appendix B

Examples of Performance Plois

This Appendix displays an example of the performance plots referenced throughout the

thesis. An explanation of the plot components and their meaning is also given.




Two different types of data plots are presented in Appendices C through K to assess the
performance of thie center-of-mass filters employed in this thesis. The first type of plot, the state
comparison plot skown in Figure B.1(a), provides a direct comparison of the filter estimated and
true value of the state. For these plots, the ensemble average (over N Monte Carlo runs) of the
true value of the state is shown as a solid line. The ensemble average value of the filter estimate

at any instant in time is shown as a dashed line.

The second type of plot, the error statistics plot shown in figure B.1(b), provides a
measure of the tracking performance. The plot shows the mean filter error, averaged over the
N Monte Carlo runs at each instant in time, for a state or variable of interest. In addition, this
type of plot displays the actual 16 (standard deviation) centered on the mean, or mean + 1o
curves. They are the two dotted lines that surround the mean cursis.  Alf the filters for this
thesis were designed to assume zero mean errors in all states, so the filter computed estimate of -
standard deviation is plotted relative to the abscissa. The legend for the symbology in the error

statistics plots is shows here.

Mean Error

Mean Error + lo Cerrarererssisanatennses

Zgro + Filter Computed lo --
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Appendix C

Filter Plots with Truth Parameter Values:

Amplitude = 0.112, Frequency = 21

This appendix contains the state and error statistics plots of the nine-state elemental filters. The

data depicted in the two types of plots in this appendix are explained in Appendix A. The state

comparison plots show the sample mean truth state over the 5 Monte Carlo runs compared to the

same statistic for the filter estimate. The error statistics plots represent the error mean

standard deviation values in pixels (or pixel/second for velocity and pogo velocity), of the errors
~ between the filter estimate and true state; true mean 1 true standard deviation are plotted,
o along thh 2ero 1 filter-computed standard devnauoa ‘
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Appendix D

Filter Plots with Truth Parameter Values:

Amplitude = 0.112, Frequency = 20xn

This appendix contains the state and error statistics plots of the nine-state elemental filters.
The data depicted in the two types of plots in this appendix are explained in Appendix A. The
state comparison plots show the sample mean truth state over the 5 Monte Carlo runs compared
to the same statistic for the filter estimate, The error statistics plots represent the error mean +
standard deviation values in pixels (or pixel/second for velocity and pogo velocity), of the errors
between the filter estimate and true state; true mean + 1 true standard deviation are plotted,
along with zero 3 1 filter-computed standard deviation.. -
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Appendix E

Filter Plots with Truth Parameter Values:_

Amplitude = 1.12, Frequency = 21t

This appendix contains the state and exror statistics plots of the nine-state clemental filters.

The data depicted in the two types of plots in this appendix are explainca in Appendix A. The -
* state comparison plots show the sample meas truth state over the 5 Monte Carlo vuns compared
to the same statistic for the fiiter cstimate. The error statistics piots represent the exvor mean +

standard deviation values in pixels (or pixcl/second for velocity and pogo velocity), of theerrors |

between the filier estimate and true state; true wmean 4 1 tree slandard deviation are ploited,
along with zcro i 1 ﬁlter»wmpuwd s!amard deviation,
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Appendix F

Filter Plots with Truth Parameter Values:

Amplitude = 1.12, Frequency = 20m

This appendix contains the state and ervor statistics plots of the nine-state elemental filters.
The data depicted in the two t7pes of plots in this appendix are explaine.' in Appendix A. The
state comparison plots show the truth staie over the 5 Monte Carlo runs compared to the same
statistic for the filter estimate, The error statistics plots represent the error mean 4 standard
deviation values in pixels (or pixel/sacond for velocity and pogo velocity), of the errors between
the filter estimate and true state; true mean + 1 true standard deviation are plotted, along with
zcro 3 1 filter computed standard “eviation,
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Appendix G

MMAE Configuration #1 Output Plots

This appendix contains the state and error statistics plots of the nine-state elemental
fiters. The data depicted in the two types of plots in this appendix are explained in Appendix
A and B, The state comparison plots show the sample mean truth state over the 5 Monte
Carlo runs compared to the same statistic for the filter estimate. The error statistics plots
represent the error mean - standard deviation values in pixels (or pixel/second for velocity
and pogo velocity), of the enors between the filter estimate and true state; true mean +: onc
trye standard deviation are plotted, along with 2ero - one filler-computed standard deviation.
Note the filter covariance calculation is shown in Equation (4.5).
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Appendix H

MMAE Configuration #2 Cutput Plots

This appendix contains the state and error statistics plots of the nine-state elemental filters.
The data depicted in the two types of plots in this appendix are explained in Appendix A. The
state comparison plots show the truth state over the 5 Monre Carlo runs compared to the same
statistic for the filter estimate. The ceror statistics plots represent the crvor mean + standard
deviation values in pixels (or pixel/second for velocity and pogo velocity), of the errors between
the filter estimate and true state; true mean 4 one true standard deviation ase plotted, along with
2¢r0 -+ one filter-computed standard deviation. Noto the filter covariance calonlation is shown
in Equation {4.5). .

All probability calculations, from this point on, will exclude the leading coofficient and
A,{r) from Equations (2.30) and (2.31).
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Appe 1dix 1

MMAE Configuration #3 Output Piots

_This appendix contains the state and error statistics plots of the nine-state clemental filters,
The data depicted in the two types of pi. 's in this appendix are explained in Appendix 1, The
~ state comparizon plots show the sample mean truth state over the 5 Monre Carle runs compared
{0 thie same statistic for the filter estimate. The ervor statistics plots represent the error mean +
standard deviation valies in pixeds (o pixel/second for vilocity and pogo velocity), of the errors
between the filker estimate and true State, true mean 4 one e standard deviation are pladted,
along with zero 1 one filter-computed standard deviation,

Note the filter covariance calemiation is shown i Equation (4.5),
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Appendix J

MMAE Configuration #4 Output Plots

This appendix contains the state and error statistics plots of the nine-state elemental filters.
The data depicted in the two types of plots in this appendix are explained in Appendix A. The
state comparison plots show the sample mean truth state over the 5 Monre Carlo runs compared
to the same statistic for the filter estimate. The error statistics plots represent the error mean -
standard deviation values in pixels (or pixel/second for velocity and pogo velocity), of the errors
between the filter estimate and true state; true mean 3 one true standard deviation are plotted,
aloag with zero 1 one filter-computed standard deviation,

Note the filter covariance calculation is shown in Equation (4.5)..
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Appendix K

MMAE Configuration #5 Outp'* Plots

This appendix contains the state and error statistics plots of the nine-state elemental filters.
The data dupxctcd in the two types of plots in this appendix are explained in Appendix A, The
state comparison plots show the sample wican truth state over the 5 Monte Carlo runs compared
to the same statistic for the filter estimate. The ervor statistics plots yepresent the error mean 3
standard deviation values in pixels (or pixel/sccond for velocity and pogo vetocity), of the errors
between the fiiter estimate and true state; teue mcan 1 one true standard deviation are plotted,
along with zero £ one filter-computed standard deviation, : .

Note the filter covariance calculation is showa in Equation (4.5;.
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